[1] Gimi B, Leoni L, Oberholzer J, etal.  Functional MR microimaging of pancreatic beta-cell activation[J]. Cell Transplant, 2006, 15(2): 195-203.   doi: 10.3727/000000006783982151
[2] Zhang S, TrokowskiR, Sherry AD.  A paramagnetic CEST agent for imaging glucose by MRI[J]. J Am Chem Soc, 2003, 125(50): 15288-15289.   doi: 10.1021/ja038345f
[3] Sweet IR, Cook DL, Lernmark A, et al.  Systematic screening of potentialbeta-cellimaging agents[J]. Biochem Biophys Res Commun, 2004, 314(4): 976-983.   doi: 10.1016/j.bbrc.2003.12.182
[4] Shiue CY, Schmitz A, Schirrmacher R, etal.  Potentialapproaches for beta cellimaging with PET and SPECT[J]. Curr Med Chem, 2004, 4(4): 271-280.
[5] Schneider S, Feilen PJ, Schreckenberger M, et al.  In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans[J]. Exp Clin Endocrinol Diabetes, 2005, 113(7): 388-395.   doi: 10.1055/s-2005-865711
[6] Olsen KM, Kearns GL, Kemp SF.  Glyburide protein binding and the effect of albumin glycation in children, young adults, and older adults with diabetes[J]. J Clin Pharmacol, 1995, 35(7): 739-745.   doi: 10.1002/j.1552-4604.1995.tb04115.x
[7] Clark PB, Gage HD, Brown-ProctorC, etal.  Neurofunctional imaging of the pancreas utilizing the cholinergic PET radioligand [18F]4-fluorobenzyltrozamicol[J]. Eur J Nucl Med Mol Imaging, 2004, 31(2): 258-260.   doi: 10.1007/s00259-003-1350-7
[8] MaffeiA, Liu Z, WitkowskiP, etal.  Identification of tissue restricted transcripts in human islets[J]. Endocrinology, 2004, 145(10): 4513-4521.   doi: 10.1210/en.2004-0691
[9] Kung MP, Hou C, Lieberman BP, etal.  In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus[J]. J Nucl Med, 2008, 49(7): 1171-1176.
[10] Eriksson O, Jahan M, Johnström P, etal.  In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cellmass[J]. Nucl Med Biol, 2010, 37(3): 357-363.   doi: 10.1016/j.nucmedbio.2009.12.004
[11] Ladriěre L, Malaisse-Lagae F, Alejandro R, etal.  Pancreatic fate of a(125)I-labelled mouse monoclonalantibody directed againstpancreatic B-cell surface ganglioside(s)in control and diabetic rats[J]. Cell Biochem Funct, 2001, 19(2): 107-115.   doi: 10.1002/cbf.903
[12] Eng J, Kleinman WA, Singh L, etal.  Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom[J]. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem, 1992, 267(11): 7402-7405.
[13] Chen J, Yu L, Wang L, et al.  Stability of synthetic exendin-4 in human plasma in vitro[J]. Protein Pept Lett, 2007, 14(1): 19-25.
[14] López de Maturana R, Willshaw A, Kuntzsch A, etal.  The isolated N-terminaldomain of the glucagon-like peptide-1(GLP-1)receptor binds exendin peptides with much higher affinity than GLP-1[J]. J Biol Chem, 2003, 278(12): 10195-10200.   doi: 10.1074/jbc.M212147200
[15] Körner M, Stöckli M, Waser B, etal.  GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting[J]. J Nucl Med, 2007, 48(5): 736-743.
[16] Gotthardt M, Lalyko G, van Eerd-Vismale J, etal.  A new technique for in vivo imaging of specific GLP-1 binding sites: first results in smallrodents[J]. Regul Pept, 2006, 137(3): 162-167.
[17] Lu Y, Dang H, Middleton B, et al.  Noninvasive imaging of islet grafts using positron-emission tomography[J]. Proc Natl Acad SciUSA, 2006, 103(30): 11294-11299.   doi: 10.1073/pnas.0603909103
[18] Lu Y, Dang H, Middleton B, et al.  Long-term monitoring of transplanted islets using positron emission tomography[J]. Mol Ther, 2006, 14(6): 851-856.