[1] Siegel RL, Miller KD, Fuchs HE, et al.  Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.   doi: 10.3322/caac.21654
[2] 中华医学会肿瘤学分会, 中华医学会杂志社.  中华医学会肿瘤学分会肺癌临床诊疗指南(2021版)[J]. 中华医学杂志, 2021, 101(23): 1725-1757.   doi: 10.3760/cma.j.cn112137-20210207-00377
Oncology Branch of Chinese Medical Association, Chinese Medical Association Pbulishing House.  Clinical diagnosis and treatment guidelines for lung cancer of Oncology Branch of Chinese Medical Association (2021 Edition)[J]. Natl Med J China, 2021, 101(23): 1725-1757.   doi: 10.3760/cma.j.cn112137-20210207-00377
[3] Wu GY, Jochems A, Refaee T, et al.  Structural and functional radiomics for lung cancer[J]. Eur J Nucl Med Mol Imaging, 2021, 48(12): 3961-3974.   doi: 10.1007/s00259-021-05242-1
[4] Lee SM, Bae SK, Jung SJ, et al.  FDG uptake in non-small cell lung cancer is not an independent predictor of EGFR or KRAS mutation status: a retrospective analysis of 206 patients[J]. Clin Nucl Med, 2015, 40(12): 950-958.   doi: 10.1097/RLU.0000000000000975
[5] Kanmaz ZD, Aras G, Tuncay E, et al.  Contribution of 18Fluorodeoxyglucose positron emission tomography uptake and TTF-1 expression in the evaluation of the EGFR mutation in patients with lung adenocarcinoma[J]. Cancer Biomark, 2016, 16(3): 489-498.   doi: 10.3233/CBM-160588
[6] 郭虹霞, 任筱璐, 张俊萍.  18F-FDG PET/CT对肺腺癌患者EGFR突变的预测价值[J]. 中华核医学与分子影像杂志, 2020, 40(8): 475-479.   doi: 10.3760/cma.j.cn321828-20200113-00017
Guo HX, Ren XL, Zhang JP, et al.  Predictive value of 18F-FDG PET/CT for EGFR mutations in patients with lung adenocarcinoma[J]. Chin J Nucl Med Mol Imaging, 2020, 40(8): 475-479.   doi: 10.3760/cma.j.cn321828-20200113-00017
[7] Gu JC, Xu SQ, Huang LX, et al.  Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer[J]. J Thorac Dis, 2018, 10(2): 723-731.   doi: 10.21037/jtd.2017.12.143
[8] 丁重阳, 李天女, 孙晋, 等.  18F-FDG摄取与甲状腺转录因子-1表达预测肺腺癌患者表皮生长因子受体突变的价值[J]. 中华核医学与分子影像杂志, 2018, 38(2): 92-96.   doi: 10.3760/cma.j.issn.2095-2848.2018.02.004
Ding CY, Li TN, Sun J, et al.  Values of 18F-FDG uptake and thyroid transcription factor-1 expression to predict the mutations of epidermal growth factor receptor in lung adenocarcinoma[J]. Chin J Nucl Med Mol Imaging, 2018, 38(2): 92-96.   doi: 10.3760/cma.j.issn.2095-2848.2018.02.004
[9] 姜阳, 马晓伟, 董楚宁, 等.  基于18F-FDG PET-CT代谢参数的风险模型对非小细胞肺癌EGFR基因突变的预测价值及效能评价[J]. 中华放射学杂志, 2020, 54(7): 688-693.   doi: 10.3760/cma.j.cn112149-20190731-00652
Jiang Y, Ma XW, Dong CN, et al.  The predictive value and efficacy of the risk model based on the metabolic parameters of 18F-FDG PET-CT for EGFR gene mutations in non-small cell lung cancer[J]. Chin J Radiol, 2020, 54(7): 688-693.   doi: 10.3760/cma.j.cn112149-20190731-00652
[10] 赵承勇, 邓小毅, 王洪松, 等.  18F-脱氧葡萄糖正电子发射计算机断层扫描显像在预测肺鳞癌表皮生长因子受体突变中的价值[J]. 中华肿瘤杂志, 2021, 43(7): 795-800.   doi: 10.3760/cma.j.cn112152-20190111-00006
Zhao CY, Deng XY, Wang HS, et al.  Value of 18F-FDG PET-CT imaging to predict epidermal growth factor receptor mutations in patients with lung squamous cell carcinoma[J]. Chin J Oncol, 2021, 43(7): 795-800.   doi: 10.3760/cma.j.cn112152-20190111-00006
[11] Lee EY, Khong PL, Lee VHF, et al.  Metabolic phenotype of stage IV lung adenocarcinoma: relationship with epidermal growth factor receptor mutation[J]. Clin Nucl Med, 2015, 40(3): e190-e195.   doi: 10.1097/RLU.0000000000000684
[12] Mayerhoefer ME, Materka A, Langs G, et al.  Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495.   doi: 10.2967/jnumed.118.222893
[13] Avanzo M, Stancanello J, Pirrone G, et al.  Radiomics and deep learning in lung cancer[J]. Strahlenther Onkol, 2020, 196(10): 879-887.   doi: 10.1007/s00066-020-01625-9
[14] Yip SSF, Kim J, Coroller TP, et al.  Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer[J]. J Nucl Med, 2017, 58(4): 569-576.   doi: 10.2967/jnumed.116.181826
[15] Zhang JY, Zhao XM, Zhao Y, et al.  Value of pre-therapy 18F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2020, 47(5): 1137-1146.   doi: 10.1007/s00259-019-04592-1
[16] Jiang MM, Zhang YQ, Xu JS, et al.  Assessing EGFR gene mutation status in non-small cell lung cancer with imaging features from PET/CT[J]. Nucl Med Commun, 2019, 40(8): 842-849.   doi: 10.1097/MNM.0000000000001043
[17] 杨天红, 张胤, 李淑仪, 等.  18F-FDG PET/CT影像组学在预测肺腺癌患者EGFR突变中的价值[J]. 中华核医学与分子影像杂志, 2021, 41(2): 65-70.   doi: 10.3760/cma.j.cn321828-20191108-00255
Yang TH, Zhang Y, Li SY, et al.  Ability of 18F-FDG PET/CT radiomic features to differentiate EGFR mutation status in patients with lung adenocarcinoma[J]. Chin J Nucl Med Mol Imaging, 2021, 41(2): 65-70.   doi: 10.3760/cma.j.cn321828-20191108-00255
[18]

Li XF, Yin GT, Zhang YF, et al. Predictive power of a radiomic signature based on 18F-FDG PET/CT images for EGFR mutational status in NSCLC[J/OL]. Front Oncol, 2019, 9: 1062[2021-07-11]. https://www.frontiersin.org/articles/10.3389/fonc.2019.01062/full. DOI: 10.3389/fonc.2019.01062.

[19] 王子阳, 尹国涛, 李小凤, 等.  机器学习结合18F-FDG PET/CT影像组学特征对肺腺癌EGFR突变亚型的预测价值[J]. 中华核医学与分子影像杂志, 2021, 41(8): 479-485.   doi: 10.3760/cma.j.cn321828-20201105-00401
Wang ZY, Yin GT, Li XF, et al.  Value of machine learning and 18F-FDG PET/CT radiomics features in lung adenocarcinoma EGFR mutation subtypes prediction[J]. Chin J Nucl Med Mol Imaging, 2021, 41(8): 479-485.   doi: 10.3760/cma.j.cn321828-20201105-00401
[20]

Zhang M, Bao YM, Rui WW, et al. Performance of 18F-FDG PET/CT radiomics for predicting EGFR mutation status in patients with non-small cell lung cancer[J/OL]. Front Oncol, 2020, 10: 568857[2021-07-11]. https://www.frontiersin.org/articles/10.3389/fonc.2020.568857/full. DOI: 10.3389/fonc.2020.568857.

[21] Liu QF, Sun DZ, Li N, et al.  Predicting EGFR mutation subtypes in lung adenocarcinoma using 18F-FDG PET/CT radiomic features[J]. Transl Lung Cancer Res, 2020, 9(3): 549-562.   doi: 10.21037/tlcr.2020.04.17
[22] Yang B, Ji HS, Zhou CS, et al.  18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiomic features for prediction of epidermal growth factor receptor mutation status and prognosis in patients with lung adenocarcinoma[J]. Transl Lung Cancer Res, 2020, 9(3): 563-574.   doi: 10.21037/tlcr-19-592
[23] Koyasu S, Nishio M, Isoda H, et al.  Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on 18F FDG-PET/CT[J]. Ann Nucl Med, 2020, 34(1): 49-57.   doi: 10.1007/s12149-019-01414-0
[24] Shiri I, Maleki H, Hajianfar G, et al.  Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning algorithms[J]. Mol Imaging Biol, 2020, 22(4): 1132-1148.   doi: 10.1007/s11307-020-01487-8
[25] LeCun Y, Bengio Y, Hinton G.  Deep learning[J]. Nature, 2015, 521(7553): 436-444.   doi: 10.1038/nature14539
[26]

Apostolopoulos ID, Pintelas EG, Livieris IE, et al. Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques[J/OL]. Med Biol Eng Comput, 2021, 59(6): 1299−1310[2021-07-11]. https://link.springer.com/article/10.1007/s11517-021-02378-y. DOI: 10.1007/s11517-021-02378-y.

[27] Han Y, Ma Y, Wu ZY, et al.  Histologic subtype classification of non-small cell lung cancer using PET/CT images[J]. Eur J Nucl Med Mol Imaging, 2021, 48(2): 350-360.   doi: 10.1007/s00259-020-04771-5
[28] Jemaa S, Fredrickson J, Carano RAD, et al.  Tumor segmentation and feature extraction from whole-body FDG-PET/CT using cascaded 2D and 3D convolutional neural networks[J]. J Digit Imaging, 2020, 33(4): 888-894.   doi: 10.1007/s10278-020-00341-1
[29]

Park C, Na KJ, Choi H, et al. Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma[J/OL]. Theranostics, 2020, 10(23): 10838−10848[2021-07-11]. https://pubmed.ncbi.nlm.nih.gov/32929383. DOI: 10.7150/thno.50283.

[30]

Mu W, Jiang L, Zhang JY, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics[J/OL]. Nat Commun, 2020, 11(1): 5228[2021-07-11]. https://www.nature.com/articles/s41467-020-19116-x. DOI: 10.1038/s41467-020-19116-x.

[31] Xiao ZY, Song Y, Wang K, et al.  One-step radiosynthesis of 18F-IRS: a novel radiotracer targeting mutant EGFR in NSCLC for PET/CT imaging[J]. Bioorg Med Chem Lett, 2016, 26(24): 5985-5988.   doi: 10.1016/j.bmcl.2016.10.084