[1]

Sobczak AIS, Stewart AJ. Coagulatory defects in type-1 and type-2 diabetes[J/OL]. Int J Mol Sci, 2019, 20(24): 6345[2020-07-15]. https://www.mdpi.com/1422-0067/20/24/6345. DOI: 10.3390/ijms20246345.

[2] Bommer C, Heesemann E, Sagalova V, et al.  The global economic burden of diabetes in adults aged 20−79 years: a cost-of-illness study[J]. Lancet Diabetes Endocrinol, 2017, 5(6): 423-430.   doi: 10.1016/S2213-8587(17)30097-9
[3] Yang JC, Zhang LJ, Wang F, et al.  Molecular imaging of diabetes and diabetic complications: beyond pancreatic β-cell targeting[J]. Adv Drug Deliv Rev, 2019, 139: 32-50.   doi: 10.1016/j.addr.2018.11.007
[4] Afroz A, Zhang W, Loh AJW, et al.  Macro- and micro-vascular complications and their determinants among people with type 2 diabetes in Bangladesh[J]. Diabetes Metab Syndr, 2019, 13(5): 2939-2946.   doi: 10.1016/j.dsx.2019.07.046
[5] Hölscher C.  Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models[J]. Neuropharmacology, 2018, 136(Pt B): 251-259.   doi: 10.1016/j.neuropharm.2018.01.040
[6] Wysham C, Shubrook J.  Beta-cell failure in type 2 diabetes: mechanisms, markers, and clinical implications[J]. Postgrad Med, 2020, 132(8): 676-686.   doi: 10.1080/00325481.2020.1771047
[7] Jodal A, Schibli R, Béhé M.  Targets and probes for non-invasive imaging of β-cells[J]. Eur J Nucl Med Mol Imaging, 2017, 44(4): 712-727.   doi: 10.1007/s00259-016-3592-1
[8] Jiang DL, Kong YY, Ren SH, et al.  Decreased striatal vesicular monoamine transporter 2 (VMAT2) expression in a type 1 diabetic rat model: a longitudinal study using micro-PET/CT[J]. Nucl Med Biol, 2020, 82/83: 89-95.   doi: 10.1016/j.nucmedbio.2020.02.011
[9]

Jahan M, Eriksson O, Johnström P, et al. Decreased defluorination using the novel beta-cell imaging agent [18F]FE-DTBZ-d4 in pigs examined by PET[J/OL]. EJNMMI Res, 2011, 1(1): 33[2020-07-15]. https://ejnmmires.springeropen.com/articles/10.1186/2191-219X-1-33. DOI: 10.1186/2191-219X-1-33.

[10] Fagerholm V, Mikkola KK, Ishizu T, et al.  Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas[J]. J Nucl Med, 2010, 51(9): 1439-1446.   doi: 10.2967/jnumed.109.074492
[11] Harris PE, Farwell MD, Ichise M.  PET quantification of pancreatic VMAT 2 binding using (+) and (−) enantiomers of [18F]FP-DTBZ in baboons[J]. Nucl Med Biol, 2013, 40(1): 60-64.   doi: 10.1016/j.nucmedbio.2012.09.003
[12] Selvaraju RK, Velikyan I, Johansson L, et al.  In vivo imaging of the glucagonlike peptide 1 receptor in the pancreas with 68Ga-labeled DO3A-exendin-4[J]. J Nucl Med, 2013, 54(8): 1458-1463.   doi: 10.2967/jnumed.112.114066
[13] Pattison DA, Hicks RJ.  Molecular imaging in the investigation of hypoglycaemic syndromes and their management[J]. Endocr Relat Cancer, 2017, 24(6): R203-R221.   doi: 10.1530/ERC-17-0005
[14] Schneider S, Feilen PJ, Schreckenberger M, et al.  In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans[J]. Exp Clin Endocrinol Diabetes, 2005, 113(7): 388-395.   doi: 10.1055/s-2005-865711
[15] Wu ZH, Todorov I, Li L, et al.  In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys40-exendin-4 by targeting GLP-1 receptor[J]. Bioconjugate Chem, 2011, 22(8): 1587-1594.   doi: 10.1021/bc200132t
[16]

De Rosa S, Arcidiacono B, Chiefari E, et al. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links[J/OL]. Front Endocrinol (Lausanne), 2018, 9: 2[2020-7-15]. https://www.frontiersin.org/articles/10.3389/fendo.2018.00002/full. DOI: 10.3389/fendo.2018.00002.

[17] Raggi P.  Atherosclerosis imaging to refine cardiovascular risk assessment in diabetic patients: computed tomography and positron emission tomography applications[J]. Atherosclerosis, 2018, 271: 77-83.   doi: 10.1016/j.atherosclerosis.2018.02.021
[18] Fiz F, Morbelli S, Piccardo A, et al.  18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: inverse correlation between calcification density and mineral metabolic activity[J]. J Nucl Med, 2015, 56(7): 1019-1023.   doi: 10.2967/jnumed.115.154229
[19] Kitagawa T, Yamamoto H, Toshimitsu S, et al.  18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis[J]. Atherosclerosis, 2017, 263: 385-392.   doi: 10.1016/j.atherosclerosis.2017.04.024
[20] Kim TN, Kim S, Yang SJ, et al.  Vascular inflammation in patients with impaired glucose tolerance and type 2 diabetes: analysis with 18F-fluorodeoxyglucose positron emission tomography[J]. Circ Cardiovasc Imaging, 2010, 3(2): 142-148.   doi: 10.1161/CIRCIMAGING.109.888909
[21] Murtaza G, Virk HUH, Khalid M, et al.  Diabetic cardiomyopathy—a comprehensive updated review[J]. Prog Cardiovasc Dis, 2019, 62(4): 315-326.   doi: 10.1016/j.pcad.2019.03.003
[22] Sasso FC, Rambaldi PF, Carbonara O, et al.  Perspectives of nuclear diagnostic imaging in diabetic cardiomyopathy[J]. Nutr, Metab Cardiovasc Dis, 2010, 20(3): 208-216.   doi: 10.1016/j.numecd.2009.08.013
[23] Byrne C, Hasbak P, Kjaer A, et al.  Myocardial perfusion in patients with non-ischaemic systolic heart failure and type 2 diabetes: a cross-sectional study using rubidium-82 PET/CT[J]. Int J Cardiovasc Imaging, 2018, 34(6): 993-1001.   doi: 10.1007/s10554-017-1295-8
[24] Agashe S, Petak S.  Cardiac autonomic neuropathy in diabetes mellitus[J]. Methodist Debakey Cardiovasc J, 2018, 14(4): 251-256.   doi: 10.14797/mdcj-14-4-251
[25] Tokuda Y, Sakakibara M, Yoshinaga K, et al.  Early therapeutic effects of adaptive servo-ventilation on cardiac sympathetic nervous function in patients with heart failure evaluated using a combination of 11C-HED PET and 123I-MIBG SPECT[J]. J Nucl Cardiol, 2019, 26(4): 1079-1089.   doi: 10.1007/s12350-017-1132-4
[26] Bernardi L, Spallone V, Stevens M, et al.  Methods of investigation for cardiac autonomic dysfunction in human research studies[J]. Diabetes Metab Res Rev, 2011, 27(7): 654-664.   doi: 10.1002/dmrr.1224
[27] Raffel DM, Wieland DM.  Assessment of cardiac sympathetic nerve integrity with positron emission tomography[J]. Nucl Med Biol, 2001, 28(5): 541-559.   doi: 10.1016/s0969-8051(01)00210-4
[28] Sinusas AJ, Lazewatsky J, Brunetti J, et al.  Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation[J]. J Nucl Med, 2014, 55(9): 1445-1451.   doi: 10.2967/jnumed.114.140137
[29] Karki R, Kodamullil AT, Hofmann-Apitius M.  Comorbidity analysis between Alzheimer's disease and type 2 diabetes mellitus (T2DM) based on shared pathways and the role of T2DM drugs[J]. J Alzheimer's Dis, 2017, 60(2): 721-731.   doi: 10.3233/JAD-170440
[30] Ferrannini E, Bjorkman O, Reichard GA Jr, et al.  The disposal of an oral glucose load in healthy subjects: a quantitative study[J]. Diabetes, 1985, 34(6): 580-588.   doi: 10.2337/diab.34.6.580
[31] Eastman RC, Carson RE, Gordon MR, et al.  Brain glucose metabolism in noninsulin-dependent diabetes mellitus: a study in Pima Indians using positron emission tomography during hyperinsulinemia with euglycemic glucose clamp[J]. J Clin Endocrinol Metab, 1990, 71(6): 1602-1610.   doi: 10.1210/jcem-71-6-1602
[32]

Waqas K, van Haard PMM, Postema JWA, et al. Diabetes mellitus-related fractional glucose uptake in men and women imaged with 18F-FDG PET-CT[J/OL]. J Endocr Soc, 2019, 3(4): 773−783[2020-07-15]. https://academic.oup.com/jes/article/3/4/773/5364742. DOI: 10.1210/js.2019-00001.

[33] Takenoshita N, Shimizu S, Kanetaka H, et al.  Classification of clinically diagnosed Alzheimer's disease associated with diabetes based on amyloid and tau PET results[J]. J Alzheimer’s Dis, 2019, 71(1): 261-271.   doi: 10.3233/JAD-190620
[34] Bowling FL, Rashid ST, Boulton AJM.  Preventing and treating foot complications associated with diabetes mellitus[J]. Nat Rev Endocrinol, 2015, 11(10): 606-616.   doi: 10.1038/nrendo.2015.130
[35]

Pitocco D, Spanu T, Di Leo M, et al. Diabetic foot infections: a comprehensive overview[J]. Eur Rev Med Pharmacol Sci, 2019, 23 (Suppl 2): S26−37. DOI: 10.26355/eurrev_201904_17471.

[36] Treglia G, Sadeghi R, Annunziata S, et al.  Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: a systematic review and a meta-analysis[J]. Foot (Edinb), 2013, 23(4): 140-148.   doi: 10.1016/j.foot.2013.07.002
[37] Weinstein EA, Ordonez AA, DeMarco VP, et al.  Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography[J]. Sci Transl Med, 2014, 6(259): 259ra146-.   doi: 10.1126/scitranslmed.3009815
[38]

Ruiz-Bedoya CA, Gordon O, Mota F, et al. Molecular imaging of diabetic foot infections: new tools for old questions[J/OL]. Int J Mol Sci, 2019, 20(23): 5984[2020-07-15]. https://www.mdpi.com/1422-0067/20/23/5984. DOI: 10.3390/ijms20235984.