[1] Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science, 2004, 305(5684):626-629. DOI:10.1126/science.1099320.
[2] Martinez MM, Reif RD, Pappas D. Detection of apoptosis:A review of conventional and novel techniques[J]. Anal Methods, 2010, 2(8):996-1004. DOI:10.1039/c0ay00247j.
[3] Liimatainen T, Hakumaki JM, Kauppinen RA, et al. Monitoring of gliomas in vivo by diffusion MRI and 1H MRS during gene therapy-induced apoptosis:interrelationships between water diffusion and mobile lipids. NMR Biomed, 2009, 22(3):272-279. DOI:10.1002/nbm.1320.
[4] Czarnota GJ, Kolios MC, Abraham J, et al. Ultrasound imaging of apoptosis:high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo[J]. Br J Cancer, 1999, 81(3):520-527. DOI:10.1038/sj.bjc.6690724.
[5] Petrovsky A, Schellenberger E, Josephson L, et al. Near-infrared fluorescent imaging of tumor apoptosis[J]. Cancer Res, 2003, 63(8):1936-1942.
[6] Shah K, Tang Y, Breakefield X, et al. Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo[J]. Oncogene, 2003, 22(44):6865-6872. DOI:10.1038/sj.onc.1206748.
[7] Zeng W, Wang X, Xu P, et al. Molecular imaging of apoptosis:from micro to macro[J]. Theranostics, 2015, 5(6):559-582. DOI:10.7150/thno.11548.
[8] Wang H, Wu Z, Li S, et al. Synthesis and evaluation of a radiolabeled bis-zinc(Ⅱ)-cyclen complex as a potential probe for in vivo imaging of cell death[J]. Apoptosis, 2017, 22(4):585-595. DOI:10.1007/s10495-017-1344-8.
[9]

Sun T, Tang G, Tian H, et al. Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe 18F FP-DPAZn2[J/OL]. Oncotarget, 2015, 6(31):30579-30591[2017-04-20]. http://www.ncbi.nlm.nih.gov/pubmed/26416423. DOI:10. 18632/oncotarget.5769.

[10] Yao S, Hu K, Tang G, et al. Positron emission tomography imaging of cell death with 18F FPDuramycin[J]. Apoptosis, 2014, 19(5):841-850. DOI:10.1007/s10495-013-0964-x.
[11] Lahorte CM, van de Wiele C, Bacher K, et al. Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans[J]. Nucl Med Commun, 2003, 24(8):871-880. DOI:10.1097/01.mnm.0000084585.29433.58.
[12] Stratton JR, Dewhurst TA, Kasina S, et al. Selective uptake of radiolabeled annexin V on acute porcine left atrial thrombi[J]. Circulation, 1995, 92(10):3113-3121.  doi: 10.1161/01.CIR.92.10.3113
[13] Kemerink GJ, Boersma HH, Thimister PW, et al. Biodistribution and dosimetry of 99mTc-BTAP-annexin-V in humans[J]. Eur J Nucl Med, 2001, 28(9):1373-1378.  doi: 10.1007/s002590100578
[14] Blankenberg FG, Katsikis PD, Tait JF, et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death[J]. Proc Natl Acad Sci U S A, 1998, 95(11):6349-6354.  doi: 10.1073/pnas.95.11.6349
[15] Kemerink GJ, Liu X, Kieffer D, et al. Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application[J]. J Nucl Med, 2003, 44(6):947-952.
[16] van de Wiele C, Lahorte C, Vermeersch H, et al. Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography[J]. J Clin Oncol, 2003, 21(18):3483-3487. DOI:10.1200/JCO.2003.12.096.
[17] Vermeersch H, Ham H, Rottey S, et al. Intraobserver, interobserver, and day-to-day reproducibility of quantitative 99mTc-HYNIC annexin-V imaging in head and neck carcinoma[J]. Cancer Biother Radiopharm, 2004, 19(2):205-210. DOI:10.1089/108497804323071986.
[18] Vermeersch H, Loose D, Lahorte C, et al. 99mTc-HYNIC Annexin-V imaging of primary head and neck carcinoma[J]. Nucl Med Commun, 2004, 25(3):259-263.  doi: 10.1097/00006231-200403000-00008
[19] Loose D, Vermeersch H, de Vos F, et al. Prognostic value of 99mTc-HYNIC annexin-V imaging in squamous cell carcinoma of the head and neck[J]. Eur J Nucl Med Mol Imaging, 2008, 35(1):47-52. DOI:10.1007/s00259-007-0577-0.
[20] Rottey S, Slegers G, Van Belle S, et al. Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to che-motherapy[J]. J Nucl Med, 2006, 47(11):1813-1818.
[21] Rottey S, van den Bossche B, Slegers G, et al. Influence of chemo-therapy on the biodistribution of[99mTc] hydrazinonicotinamide annexin V in cancer patients[J]. Q J Nucl Med Mol Imaging, 2009, 53(2):127-132.
[22] Haas RL, de Jong D, Valdés Olmos RA, et al. In vivo imaging of radiation-induced apoptosis in follicular lymphoma patients[J]. Int J Radiat Oncol Biol Phys, 2004, 59(3):782-787. DOI:10.1016/j.ijrobp.2003.11.017.
[23] Hoebers FJ, Kartachova M, de Bois J, et al. 99mTc Hynic-rh-Annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy[J]. Eur J Nucl Med Mol Imaging, 2008, 35(3):509-518. DOI:10.1007/s00259-007-0624-x.
[24] Kartachova M, van Zandwijk N, Burgers S, et al. Prognostic significance of 99mTc Hynic-rh-annexin V scintigraphy during platinum-based chemotherapy in advanced lung cancer[J]. J Clin Oncol, 2007, 25(18):2534-2539. DOI:10.1200/JCO.2006.10.1337.
[25] Corsten MF, Hofstra L, Narula J, et al. Counting heads in the war against cancer:defining the role of annexin A5 imaging in cancer treatment and surveillance[J]. Cancer Res, 2006, 66(3):1255-1260. DOI:10.1158/0008-5472.CAN-05-3000.
[26] Murakami Y, Takamatsu H, Taki J, et al. 18F-labelled annexin V:a PET tracer for apoptosis imaging[J]. Eur J Nucl Med Mol Imaging, 2004, 31(4):469-474. DOI:10.1007/s00259-003-1378-8.
[27] Cohen A, Shirvan A, Levin G, et al. From the Gla domain to a novel small-molecule detector of apoptosis[J]. Cell Res, 2009, 19(5):625-637. DOI:10.1038/cr.2009.17.
[28]

Yao S, Hu K, Tang G, et al. Molecular PET imaging of cyclophos-phamide induced apoptosis with 18F-ML-8[J/OL]. Biomed Res Int, 2015:317403[2017-04-20]. http://www.ncbi.nlm.nih.gov/pubmed/25977920. DOI:10.1155/2015/317403.

[29] Damianovich M, Ziv I, Heyman SN, et al. ApoSense:a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis[J]. Eur J Nucl Med Mol Imaging, 2006, 33(3):281-291. DOI:10.1007/s00259-005-1905-x.
[30] Aloya R, Shirvan A, Grimberg H, et al. Molecular imaging of cell death in vivo by a novel small molecule probe[J]. Apoptosis, 2006, 11(12):2089-2101. DOI:10.1007/s10495-006-0282-7.
[31] 张晓军, 李云钢, 刘健, 等. 18F-ML-10的制备、生物分布和临床应用[J].中华核医学与分子影像杂志, 2016, 36(2):131-136. DOI:10.3760/cma.j.issn. 2095-2848.2016.02.008.
Zhang XJ, Li YG, Liu J, et al. Preparation and biodistribution of 2-(5-[18F] fluoro-pentyl)-2-methyl-malonic acid and its clinical application[J]. Chin J Nucl Med Mol Imaging, 2016, 36(2):131-136.  doi: 10.3760/cma.j.issn.2095-2848.2016.02.008
[32] Höglund J, Shirvan A, Antoni G, et al. 18F-ML-10, a PET tracer for apoptosis:first human study[J]. J Nucl Med, 2011, 52(5):720-725.DOI:10.2967/jnumed.110.081786.
[33] Allen AM, Ben-Ami M, Reshef A, et al. Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 1F-ML-10[J]. Eur J Nucl Med Mol Imaging, 2012, 39(9):1400-1408. DOI:10.1007/s00259-012-2150-8.
[34] Oborski MJ, Laymon CM, Lieberman FS, et al. First use of 18F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy[J].Brain Behav, 2014, 4(2):312-315. DOI:10.1002/brb3.217.
[35]

Bauwens M, de Saint-Hubert M, Cleynhens J, et al. Radioiodinated phenylalkyl malonic acid derivatives as pH-sensitive SPECT tracers[J/OL]. PLoS One, 2012, 7(6):e38428[2017-04-20]. http://www.ncbi.nlm.nih.gov/pubmed/22719886. DOI:10.1371/journal.pone.0038428.

[36] Su H, Chen G, Gangadharmath U, et al. Evaluation of 18F-CP18 as a PET imaging tracer for apoptosis[J]. Mol Imaging Biol, 2013, 15(6):739-747. DOI:10.1007/s11307-013-0644-9.
[37] Xia CF, Chen G, Gangadharmath U, et al. In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer 18F-CP18 for PET imaging of apoptosis in tumors[J]. Mol Imaging Biol, 2013, 15(6):748-757. DOI:10.1007/s11307-013-0646-7.
[38]

Rapic S, Vangestel C, Elvas F, et al. Evaluation of 18F CP18 as a Substrate-Based apoptosis imaging agent for the assessment of early treatment response in oncology[J/OL]. Mol Imaging Biol, 2017[2017-04-20]. http://www.ncbi.nlm.nih.gov/pubmed/28050749.DOI:10.1007/s11307-016-1037-7.[publishedonline ahead of print].

[39]

张宝石. 18F标记小分子肽(18F-CP-18) 早期评价肺癌化疗后细胞凋亡的基础研究[D]. 北京: 军医进修学院, 2011: 24-31.

Zhang BS. Experiment on 18F-CP-18 in early evaluation of lung cancer apoptosis after chemotherapy[D]. Beijing:Chinese PLA Postgraduate Medical School, 2011:24-31.

[40]

吴晓燕. Caspase-3探针F-CP-18在体外和活体肿瘤细胞凋亡显像的实验研究[D]. 天津: 南开大学, 2014: 27-38.

Wu XY. In vitro and in vivo evaluation of the caspase-3 substrate-based probe F-CP-18 for apoptosis imaing in tumor[D]. Tianjin:Nankai University, 2014:27-38.

[41] Doss M, Kolb HC, Walsh JC, et al. Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers[J]. J Nucl Med, 2013, 54(12):2087-2092. DOI:10.2967/jnumed.113.119800.
[42] Smith G, Glaser M, Perumal M, et al. Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide[J]. J Med Chem, 2008, 51(24):8057-8067. DOI:10.1021/jm801107u.
[43] Nguyen QD, Smith G, Glaser M, et al. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific[18F]-labeled isatin sulfonamide[J]. Proc Natl Acad Sci U S A, 2009, 106(38):16375-16380. DOI:10.1073/pnas.0901310106.
[44] Nguyen QD, Lavdas I, Gubbins J, et al. Temporal and spatial evolution of therapy-induced tumor apoptosis detected by caspase-3-selective molecular imaging[J]. Clin Cancer Res, 2013, 19(14):3914-3924. DOI:10.1158/1078-0432.CCR-12-3814.
[45] Challapalli A, Kenny LM, Hallett WA, et al. 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis:biodistribution and radiation dosimetry[J]. J Nucl Med, 2013, 54(9):1551-1556. DOI:10.2967/jnumed.112.118760.
[46] Jiang H, Zhao PJ, Su D, et al. Paris saponin I induces apoptosis via increasing the Bax/Bcl-2 ratio and caspase-3 expression in gefitinib-resistant non-small cell lung cancer in vitro and in vivo[J]. Mol Med Rep, 2014, 9(6):2265-2272. DOI:10.3892/mmr. 2014. 2108.
[47]

Min Z, Amlani M. Pulmonary Mycobacterium kansasii Infection Mimicking Malignancy on the 18F-FDG PET Scanin a Patient Receiving Etanercept:A Case Report and Literature Review[J/OL]. Case Rep Pulmonol, 2014:973573[2017-04-20]. https://www.ncbi.nlm.nih.gov/pubmed/?term=25389506. DOI:10.1155/2014/973573