[1] Kontostathi G, Zoidakis J, Makridakis M, et al.  Cervical cancer cell line secretome highlights the roles of transforming growth factor-beta-induced protein ig-h3, peroxiredoxin-2, and NRF2 on cervical carcinogenesis[J]. Biomed Res Int, 2017, 2017: 4180703-.   doi: 10.1155/2017/4180703
[2] Holt HK, Zhang L, Zhao FH, et al.  Evaluation of multiple primary and combination screening strategies in postmenopausal women for detection of cervical cancer in China[J]. Int J Cancer, 2017, 140(3): 544-554.   doi: 10.1002/ijc.30468
[3] Zhang Q, Zhao MY, Cao D, et al.  Assessment of the effectiveness of HPV16/18 infection referred for colposcopy in cervical cancer screening in Northwest of China[J]. J Med Virol, 2018, 90(1): 165-171.   doi: 10.1002/jmv.24902
[4] Creutzberg CL, Lu KH, Fleming GF.  Uterine Cancer: adjuvant therapy and management of metastatic disease[J]. J Clin Oncol, 2019, 37(27): 2490-2500.
[5] Körschgen H, Kuske M, Karmilin K, et al.  Intracellular activation of ovastacin mediates pre-fertilization hardening of the zona pellucida[J]. Mol Hum Reprod, 2017, 23(9): 607-616.   doi: 10.1093/molehr/gax040
[6] Sachdev M, Mandal A, Mulders S, et al.  Oocyte specific oolemmal SAS1B involved in sperm binding through intra-acrosomal SLLP1 during fertilization[J]. Dev Biol, 2012, 363(1): 40-51.   doi: 10.1016/j.ydbio.2011.12.021
[7]

Pires ES, D'Souza RS, Needham MA, et al. Membrane associated cancer-oocyte neoantigen SAS1B/ovastacin is a candidate immunotherapeutic target for uterine tumors[J/OL]. Oncotarget, 2015, 6(30): 30194−30211[2020-09-16]. https://www.oncotarget.com/article/4734/text. DOI: 10.18632/oncotarget.4734.

[8] Kristjansdottir B, Levan K, Partheen K, et al.  Potential tumor biomarkers identified in ovarian cyst fluid by quantitative proteomic analysis, iTRAQ[J]. Clin Proteomics, 2013, 10(1): 4-.   doi: 10.1186/1559-0275-10-4
[9] Kadkhodayan S, Shandiz FH, Toussi MS, et al.  Concurrent chemoradiotherapy without brachytherapy in locally advanced cervical cancer[J]. Iran J Cancer Prev, 2013, 6(4): 195-200.
[10] Muroyama Y, Nirschl TR, Kochel CM, et al.  Stereotactic radiotherapy increases functionally suppressive regulatory T cells in the tumor microenvironment[J]. Cancer Immunol Res, 2017, 5(11): 992-1004.   doi: 10.1158/2326-6066
[11] Ghorbani M, Behmadi M.  Evaluation of hypothetical 153Gd source for use in brachytherapy[J]. Rep Pract Oncol Radiother, 2016, 21(1): 17-24.   doi: 10.1016/j.rpor.2015.05.005
[12] Huo JH, Giordano SH, Smith BD, et al.  Contemporary toxicity profile of breast brachytherapy versus external beam radiation after lumpectomy for breast cancer[J]. Int J Radiat Oncol Biol Phys, 2016, 94(4): 709-718.   doi: 10.1016/j.ijrobp.2015.12.013
[13] Leung THY, Tang HWM, Siu MKY, et al.  Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness[J]. J Pathol, 2018, 244(2): 151-163.   doi: 10.1002/path.4991
[14]

Tyagi A, Vishnoi K, Kaur H, et al. Cervical cancer stem cells manifest radioresistance: association with upregulated AP-1 activity[J/OL]. Sci Rep, 2017, 7(1): 4781[2020-09-16]. https://www.nature.com/articles/s41598-017-05162-x. DOI: 10.1038/s41598-017-05162-x.

[15] Kuang JY, Min L, Liu CY, et al.  RNF8 promotes epithelial-mesenchymal transition in lung cancer cells via stabilization of slug[J]. Mol Cancer Res, 2020, 18(11): 1638-1649.   doi: 10.1158/1541-7786.MCR-19-1211
[16]

Hao WC, Zhong QL, Pang WQ, et al. MST4 inhibits human hepatocellular carcinoma cell proliferation and induces cell cycle arrest via suppression of PI3K/AKT pathway[J/OL]. J Cancer, 2020, 11(17): 5106−5117[2020-09-16]. https://www.jcancer.org/v11p5106.htm. DOI: 10.7150/jca.45822.

[17] Yang Y, Tian ZY, Guo R, et al.  Nrf2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways[J]. Oxid Med Cell Longev, 2020, 2020: 9867595-.   doi: 10.1155/2020/9867595.eCollection2020
[18] Lv BT, Li FZ, Liu XL, et al.  The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway[J]. Cancer Gene Ther, 2021, 28(1/2): 74-88.   doi: 10.1038/s41417-020-0185-8
[19] Amirani E, Hallajzadeh J, Asemi Z, et al.  Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy[J]. Int J Biol Macromol, 2020, 164: 456-467.   doi: 10.1016/j.ijbiomac.2020.07.137
[20] Ghasemi Z, Tahmasebi-Birgani MJ, Novin AG, et al.  Fractionated radiation promotes proliferation and radioresistance in bystander A549 cells but not in bystander HT29 cells[J]. Life Sci, 2020, 257: 118087-.   doi: 10.1016/j.lfs.2020.118087
[21] He Y, Ma MD, Yan YG, et al.  Combined pre-conditioning with salidroside and hypoxia improves proliferation, migration and stress tolerance of adipose-derived stem cells[J]. J Cell Mol Med, 2020, 24(17): 9958-9971.   doi: 10.1111/jcmm.15598
[22] Tsai JL, Lee YM, Pan CY, et al.  The novel VEGF121-VEGF165 fusion attenuates angiogenesis and drug resistance via targeting VEGFR2-HIF-1α-VEGF165/Lon signaling through PI3K-AKT-mTOR pathway[J]. Curr Cancer Drug Targets, 2016, 16(3): 275-286.   doi: 10.2174/156800961603160206125352
[23]

Yang L, Yang GH, Ding YJ, et al. Inhibition of PI3K/AKT signaling pathway radiosensitizes pancreatic cancer cells with ARID1A deficiency in vitro[J/OL]. J Cancer, 2018, 9(5): 890−900[2020-09-16]. https://www.jcancer.org/v09p0890.htm. DOI: 10.7150/jca.21306.