[1] Sochocka M, Diniz BS, Leszek J.  Inflammatory response in the CNS: friend or foe?[J]. Mol Neurobiol, 2017, 54(10): 8071-8089.   doi: 10.1007/s12035-016-0297-1
[2] Feltes PK, de Vries EFJ, Juarez-Orozco LE, et al.  Repeated social defeat induces transient glial activation and brain hypometabolism: a positron emission tomography imaging study[J]. J Cereb Blood Flow Metab, 2019, 39(3): 439-453.   doi: 10.1177/0271678X17747189
[3] Van Camp N, Lavisse S, Roost P, et al.  TSPO imaging in animal models of brain diseases[J]. Eur J Nucl Med Mol Imaging, 2021, 49(1): 77-109.   doi: 10.1007/s00259-021-05379-z
[4] Rupprecht R, Papadopoulos V, Rammes G, et al.  Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders[J]. Nat Rev Drug Discov, 2010, 9(12): 971-988.   doi: 10.1038/nrd3295
[5] Austin CJD, Kahlert J, Kassiou M, et al.  The translocator protein (TSPO): a novel target for cancer chemotherapy[J]. Int J Biochem Cell Biol, 2013, 45(7): 1212-1216.   doi: 10.1016/j.biocel.2013.03.004
[6]

Werry EL, Bright FM, Piguet O, et al. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders[J/OL]. Int J Mol Sci, 2019, 20(13): 3161[2022-04-22]. https://www.mdpi.com/1422-0067/20/13/3161. DOI: 10.3390/ijms20133161.

[7] 胡伟, 赵军.  小胶质细胞在AD炎性机制中的作用及其常见PET显像剂的应用进展[J]. 国际放射医学核医学杂志, 2016, 40(1): 44-49.   doi: 10.3760/cma.j.issn.1673-4114.2016.01.009
Hu W, Zhao J.  Microglia's Alzheimer disease inflammatory mechanisms and progress of its common application in PET imaging agents[J]. Int J Radiat Med Nucl Med, 2016, 40(1): 44-49.   doi: 10.3760/cma.j.issn.1673-4114.2016.01.009
[8] Pike VW.  Considerations in the development of reversibly binding PET radioligands for brain imaging[J]. Curr Med Chem, 2016, 23(18): 1818-1869.   doi: 10.2174/0929867323666160418114826
[9]

Fujita M, Kobayashi M, Ikawa M, et al. Comparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176-based on recent publications that measured specific-to-non-displaceable ratios[J/OL]. EJNMMI Res, 2017, 7(1): 84[2022-04-22]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-017-0334-8. DOI: 10.1186/s13550-017-0334-8.

[10] Kreisl WC, Henter ID, Innis RB.  Imaging translocator protein as a biomarker of neuroinflammation in dementia[J]. Adv Pharmacol, 2018, 82: 163-185.   doi: 10.1016/bs.apha.2017.08.004
[11] Viviano M, Barresi E, Siméon FG, et al.  Essential principles and recent progress in the development of TSPO PET ligands for neuroinflammation imaging[J]. Curr Med Chem, 2022, 29(28): 4862-4890.   doi: 10.2174/0929867329666220329204054
[12] Ikawa M, Lohith TG, Shrestha S, et al.  11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain[J]. J Nucl Med, 2017, 58(2): 320-325.   doi: 10.2967/jnumed.116.178996
[13] Kreisl WC, Kim MJ, Coughlin JM, et al.  PET imaging of neuroinflammation in neurological disorders[J]. Lancet Neurol, 2020, 19(11): 940-950.   doi: 10.1016/S1474-4422(20)30346-X
[14]

Mattner F, Katsifis A, Bourdier T, et al. Synthesis and pharmacological evaluation of [18F]PBR316: a novel PET ligand targeting the translocator protein 18 kDa (TSPO) with low binding sensitivity to human single nucleotide polymorphism rs6971[J/OL]. RSC Med Chem, 2021, 12(7): 1207−1221[2022-04-22]. https://pubs.rsc.org/en/content/articlelanding/2021/md/d1md00035g. DOI: 10.1039/d1md00035g.

[15]

Kim K, Kim H, Bae S H, et al. [18F]CB251 PET/MR imaging probe targeting translocator protein (TSPO) independent of its Polymorphism in a Neuroinflammation Model[J/OL]. Theranostics, 2020, 10(20): 9315−9331[2022-04-22]. https://www.thno.org/v10p9315.htm. DOI: 10.7150/thno.46875.

[16] MacAskill MG, Stadulyte A, Williams L, et al.  Quantification of macrophage-driven inflammation during myocardial infarction with 18F-LW223, a novel TSPO radiotracer with binding independent of the rs6971 human polymorphism[J]. J Nucl Med, 2021, 62(4): 536-544.   doi: 10.2967/jnumed.120.243600
[17] Owen DR, Howell OW, Tang SP, et al.  Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation[J]. J Cereb Blood Flow Metab, 2010, 30(9): 1608-1618.   doi: 10.1038/jcbfm.2010.63
[18] Owen DRJ, Gunn RN, Rabiner EA, et al.  Mixed-affinity binding in humans with 18-kDa translocator protein ligands[J]. J Nucl Med, 2011, 52(1): 24-32.   doi: 10.2967/jnumed.110.079459
[19] Feeney C, Scott G, Raffel J, et al.  Kinetic analysis of the translocator protein positron emission tomography ligand[18F]GE-180 in the human brain[J]. Eur J Nucl Med Mol Imaging, 2016, 43(12): 2201-2210.   doi: 10.1007/s00259-016-3444-z
[20] Gulyás B, Tóth M, Schain M, et al.  Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [11C]vinpocetine[J]. J Neurol Sci, 2012, 320(1/2): 110-117.   doi: 10.1016/j.jns.2012.06.026
[21] Chaney A, Cropper HC, Johnson EM, et al.  11C-DPA-713 versus 18F-GE-180: a preclinical comparison of translocator protein 18 kDa PET tracers to visualize acute and chronic neuroinflammation in a mouse model of ischemic stroke[J]. J Nucl Med, 2019, 60(1): 122-128.   doi: 10.2967/jnumed.118.209155
[22] Barca C, Kiliaan AJ, Wachsmuth L, et al.  Short-term colony-stimulating factor 1 receptor inhibition-induced repopulation after stroke assessed by longitudinal 18F-DPA-714 PET imaging[J]. J Nucl Med, 2022, 63(9): 1408-1414.   doi: 10.2967/jnumed.121.263004
[23]

Al-Khishman NU, Qi Q, Roseborough AD, et al. TSPO PET detects acute neuroinflammation but not diffuse chronically activated MHCII microglia in the rat[J/OL]. EJNMMI Res, 2020, 10(1): 113[2022-04-22]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-020-00699-x. DOI: 10.1186/s13550-020-00699-x.

[24] Liddelow SA, Barres BA.  Reactive astrocytes: production, function, and therapeutic potential[J]. Immunity, 2017, 46(6): 957-967.   doi: 10.1016/j.immuni.2017.06.006
[25]

Israel I, Ohsiek A, Al-Momani E, et al. Combined[18F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice[J/OL]. J Neuroinflammation, 2016, 13(1): 140[2022-04-22]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-016-0604-9. DOI: 10.1186/s12974-016-0604-9.

[26]

Hosomi S, Watabe T, Mori Y, et al. Inflammatory projections after focal brain injury trigger neuronal network disruption: an 18F-DPA714 PET study in mice[J/OL]. Neuroimage Clin, 2018, 20: 946−954[2022-04-22]. https://www.sciencedirect.com/science/article/pii/S2213158218303073?via%3Dihub. DOI: 10.1016/j.nicl.2018.09.031.

[27]

Delage C, Vignal N, Guerin C, et al. From positron emission tomography to cell analysis of the 18-kDa Translocator Protein in mild traumatic brain injury[J/OL]. Sci Rep, 2021, 11(1): 24009[2022-04-22]. https://www.nature.com/articles/s41598-021-03416-3. DOI: 10.1038/s41598-021-03416-3.

[28]

Aertker BM, Kumar A, Cardenas F, et al. PET imaging of peripheral benzodiazepine receptor standard uptake value increases after controlled cortical impact, a rodent model of traumatic brain injury[J/OL]. ASN Neuro, 2021, 13: 17590914211014135[2022-04-22]. https://journals.sagepub.com/doi/10.1177/17590914211014135. DOI: 10.1177/17590914211014135.

[29]

Hamelin L, Lagarde J, Dorothée G, et al. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging[J]. Brain, 2016, 139(Pt 4): 1252−1264. DOI: 10.1093/brain/aww017.

[30] Edison P, Archer HA, Gerhard A, et al.  Microglia, amyloid, and cognition in Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study[J]. Neurobiol Dis, 2008, 32(3): 412-419.   doi: 10.1016/j.nbd.2008.08.001
[31] Liu B, Le KX, Park MA, et al.  In vivo detection of age- and disease-related increases in neuroinflammation by 18F-GE180 TSPO microPET imaging in wild-type and Alzheimer's transgenic mice[J]. J Neurosci, 2015, 35(47): 15716-15730.   doi: 10.1523/JNEUROSCI.0996-15.2015
[32] Tournier BB, Tsartsalis S, Rigaud D, et al.  TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer's disease[J]. Neurobiol Dis, 2019, 121: 95-105.   doi: 10.1016/j.nbd.2018.09.022
[33] Dalrymple A, Wild EJ, Joubert R, et al.  Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates[J]. J Proteome Res, 2007, 6(7): 2833-2840.   doi: 10.1021/pr0700753
[34] Simmons DA, James ML, Belichenko NP, et al.  TSPO-PET imaging using [18F]PBR06 is a potential translatable biomarker for treatment response in Huntington's disease: preclinical evidence with the p75NTR ligand LM11A-31[J]. Hum Mol Genet, 2018, 27(16): 2893-2912.   doi: 10.1093/hmg/ddy202
[35]

Rocha NP, Charron O, Latham LB, et al. Microglia activation in basal ganglia is a late event in huntington disease pathophysiology[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2021, 8(3): e984[2022-04-22]. https://nn.neurology.org/content/8/3/e984. DOI: 10.1212/NXI.0000000000000984.

[36]

Lois C, González I, Izquierdo-García D, et al. Neuroinflammation in Huntington's disease: new insights with 11C-PBR28 PET/MRI[J/OL]. ACS Chem Neurosci, 2018, 9(11): 2563−2571[2022-04-22]. https://pubs.acs.org/doi/10.1021/acschemneuro.8b00072. DOI: 10.1021/acschemneuro.8b00072.

[37] Belloli S, Morari M, Murtaj V, et al.  Translation imaging in Parkinson's disease: focus on neuroinflammation[J]. Front Aging Neurosci, 2020, 12: 152-.   doi: 10.3389/fnagi.2020.00152
[38] Gerhard A, Pavese N, Hotton G, et al.  In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease[J]. Neurobiol Dis, 2006, 21(2): 404-412.   doi: 10.1016/j.nbd.2005.08.002
[39] Iannaccone S, Cerami C, Alessio M, et al.  In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson's disease[J]. Parkinsonism Relat Disord, 2013, 19(1): 47-52.   doi: 10.1016/j.parkreldis.2012.07.002
[40] Varnäs K, Cselényi Z, Jucaite A, et al.  PET imaging of [11C]PBR28 in Parkinson's disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding[J]. Eur J Nucl Med Mol Imaging, 2019, 46(2): 367-375.   doi: 10.1007/s00259-018-4161-6
[41] 乔洪文, 李则, 陈树安, 等.  神经炎症显像剂18F-PBR06的自动化制备[J]. 核技术, 2020, 43(8): 080301-.   doi: 10.11889/j.0253-3219.2020.hjs.43.080301
Qiao HW, Li Z, Chen SA, et al.  Automated preparation of neuroinflammation imaging tracer 18F-PBR06[J]. Nucl Tech, 2020, 43(8): 080301-.   doi: 10.11889/j.0253-3219.2020.hjs.43.080301
[42] de Paula Faria D, de Vries EFJ, Sijbesma JWA, et al.  PET imaging of glucose metabolism, neuroinflammation and demyelination in the lysolecithin rat model for multiple sclerosis[J]. Mult Scler, 2014, 20(11): 1443-1452.   doi: 10.1177/1352458514526941
[43]

Vainio SK, Dickens AM, Tuisku J, et al. Cessation of anti-VLA-4 therapy in a focal rat model of multiple sclerosis causes an increase in neuroinflammation[J/OL]. EJNMMI Res, 2019, 9(1): 38[2022-04-22]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-019-0508-7. DOI: 10.1186/s13550-019-0508-7.

[44] Bodini B, Poirion E, Tonietto M, et al.  Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of worsening disability in multiple sclerosis[J]. J Nucl Med, 2020, 61(7): 1043-1049.   doi: 10.2967/jnumed.119.231340
[45] Durkee C, Kofuji P, Navarrete M, et al.  Astrocyte and neuron cooperation in long-term depression[J]. Trends Neurosci, 2021, 44(10): 837-848.   doi: 10.1016/j.tins.2021.07.004
[46]

Guo JM, Qiu T, Wang LX, et al. Microglia loss and astrocyte activation cause dynamic changes in hippocampal [18F]DPA-714 uptake in mouse models of depression[J/OL]. Front Cell Neurosci, 2022, 16: 802192[2022-04-22]. https://www.frontiersin.org/articles/10.3389/fncel.2022.802192/full. DOI: 10.3389/fncel.2022.802192.

[47] Meyer JH, Cervenka S, Kim MJ, et al.  Neuroinflammation in psychiatric disorders: PET imaging and promising new targets[J]. Lancet Psychiatry, 2020, 7(12): 1064-1074.   doi: 10.1016/S2215-0366(20)30255-8