[1] 廖伟, 陈丽英, 郭启勇. 肝脏特异性磁共振对比剂—菲立磁的临床应用初探. 临床放射学杂志, 2001, 20(4): 251- 255.  doi: 10.3969/j.issn.1001-9324.2001.04.003
[2] 张雪, 徐荣天, 任克, 等. 超顺磁性纳米氧化铁(SPIO)增强MRI对原发性肝癌的诊断价值. 中国临床影像学杂志, 2002, 13(4): 262-265.
[3] Moore A, Medarova Z, Potthast A, et al. In vivo targeting of under-glycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res, 2004, 64(5): 1821-1827.  doi: 10.1158/0008-5472.CAN-03-3230
[4] Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamag-netic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A, 2006, 78(3): 550-557.
[5] Leuschner C, Kumar CS, Hansel W, et al. LHRH-conjugated mag-netic iron oxide nanoparticles for detection of breast cancer metas-tases. Breast Cancer Res Treat, 2006, 99(2): 163-176.  doi: 10.1007/s10549-006-9199-7
[6] Simberg D, Duza T, Park JH, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA, 2007, 104(3): 932-936.  doi: 10.1073/pnas.0610298104
[7] Zhang C, Jugold M, Woenne EC, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res, 2007, 67(4): 1555-1562.  doi: 10.1158/0008-5472.CAN-06-1668
[8] Serda RE, Adolphi NL, Bisoffi M, et al. Targeting and cellular traf-ficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging, 2007, 6(4): 277-288.
[9] Lee JH, Huh YM, Jun YW, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med, 2007, 13(1): 95-99.  doi: 10.1038/nm1467
[10] Sun C, Veiseh O, Gunn J, et al. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small, 2008, 4(3): 372-379.  doi: 10.1002/smll.200700784
[11] Yang F, Li L, Li Y, et al. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents. Phys Med Biol, 2008, 53(21): 6129-6141.  doi: 10.1088/0031-9155/53/21/016
[12] Sonvico F, Mornet S, Vasseur S, et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characteriza-tion, and in vitro experiments. Bioconjug Chem, 2005, 16 (5): 1181-1188.  doi: 10.1021/bc050050z
[13] Kohler N, Sun C, Wang J, et al. Methotrexate-modified superpara-magnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir, 2005, 21(19): 8858-8864.  doi: 10.1021/la0503451
[14] Alexiou C, Schmid RJ, Jurgons R, et al. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J, 2006, 35(5): 446-450.  doi: 10.1007/s00249-006-0042-1
[15] Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res, 2006, 12(22): 6677-6686.  doi: 10.1158/1078-0432.CCR-06-0946
[16] Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett, 2006, 6(11): 2427-2430.  doi: 10.1021/nl061412u
[17] Yang J, Lee CH, Ko HJ, et al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic ef-fects on breast cancer. Angew Chem Int Ed Engl, 2007, 46(46): 8836-8839.  doi: 10.1002/anie.200703554
[18] Veiseh O, Gunn JW, Jievit FM, et al. Inhibition of tumor-cell inva-sion with chlorotoxin-bound superparamagnetic nanoparticles. Small, 2009, 5(2): 256-264.
[19] Samanta B, Yan H, Fischer NO, et al. Pro-teinpassivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. J Mater Chem, 2008, 18(11): 1204-1208.  doi: 10.1039/b718745a