[1] Jaskowiak CJ, Bianco JA, Perlman SB, et al. Influence of Reconstruction iterations on 18F-FDG PET/CT standardized uptake values[J]. J Nucl Med, 2005, 46(3):424-428.
[2] Allal AS, Dulguerov P, Allaoua M, et al. Standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy[J]. J Clin Oncol, 2002, 20(5):1398-1404.
[3] Halfpenny W, Hain SF, Biassoni L, et al. FDG-PET. A possible prognostic factor in head and neck cancer[J]. Br J Cancer, 2002, 86(4):512-516.
[4] Cistaro A, Quartuccio N, Mojtahedi A, et al. Prediction of 2 years-survival in patients with stage I and II non-small cell lung cancer utilizing 18F-FDG PET/CT SUV quantification[J]. Radiol Oncol, 2013, 47(3):219-223.
[5] Schinagl DA, Vogel WV, Hoffmann AL, et al. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer[J]. Int J Radiat Oncol Biol Phys, 2007, 69(4):1282-1289.
[6] Werner-Wasik M, Nelson AD, Choi W, et al. What is the best way to contour lung tumors on PET scans Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom[J]. Int J Radiat Oncol Biol Phys, 2012, 82(3):1164-1171.
[7] Boellaard R, O′doherty MJ, Weber WA, et al. FDG PET and PET/CT:EANM procedure guidelines for tumour PET imaging:version 1.0[J]. Eur J Nucl Med Mol Imaging, 2010, 37(1):181-200.
[8] Meignan M, Sasanelli M, Casasnovas RO, et al. Metabolic tumour volumes measured at staging in lymphoma:methodological evaluation on phantom experiments and patients[J]. Eur J Nucl Med Mol Imaging, 2014, 41(6):1113-1122.
[9] Daisne JF, Duprez T, Weynand B, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma:comparison at CT, Mr imaging, and FDG PET and validation with surgical specimen[J]. Radiology, 2004, 233(1):93-100.
[10] Lee HY, Hyun SH, Lee KS, et al. Volume-based parameter of 18F-FDG PET/CT in malignant pleural mesothelioma:prediction of therapeutic response and prognostic implications[J]. Ann Surg Oncol, 2010, 17(10):2787-2794.
[11] Liao S, Penney BC, Wroblewski K, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2012, 39(1):27-38.
[12] Costelloe CM, Macapinlac HA, Madewell JE, et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma[J]. J Nucl Med, 2009, 50(3):340-347.
[13] Chung HH, Kwon HW, Kang KW, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer[J]. Ann Surg Oncol, 2012, 19(6):1966-1972.
[14] Lee P, Weerasuriya DK, Lavori PW, et al. Metabolic tumor burden predicts for disease progression and death in lung cancer[J]. Int J Radiat Oncol Biol Phys, 2007, 69(2):328-333.
[15] Arslan N, Tuncel M, Kuzhan O, et al. Evaluation of outcome prediction and disease extension by quantitative 2-deoxy-2-[18F] fluoro-D-glucose with positron emission tomography in patients with small cell lung cancer[J]. Ann Nucl Med, 2011, 25(6):406-413.
[16] Kim TM, Paeng JC, Chun IK, et al. Total lesion glycolysis in positron emission tomography is a better predictor of outcome than the International Prognostic Index for patients with diffuse large B cell lymphoma[J]. Cancer, 2013, 119(6):1195-1202.
[17] Szczuraszek K, Mazur G, Jeleń M, et al. Prognostic significance of Ki-67 antigen expression in non-Hodgkin′s lymphomas[J]. Anticancer Res, 2008, 28(2A):1113-1118.
[18] Brown DC, Gatter KC. Ki67 protein:the immaculate deception?[J]. Histopathology, 2002, 40(1):2-11.
[19] Endl E, Gerdes J. The Ki-67 protein:fascinating forms and an unknown function[J]. Exp Cell Res, 2000, 257(2):231-237.
[20] Gerdes J, Lemke H, Baisch H, et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67[J]. J Immunol, 1984, 133(4):1710-1715.
[21] Weber G. Enzymology of cancer cells(first of two parts)[J]. N Engl J Med, 1977, 296(9):486-492.
[22] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
[23] 梁颖, 吴宁, 方艳, 等.侵袭性淋巴瘤18F标记的氟代脱氧葡萄糖摄取程度与Ki-67表达的相关性[J].中华肿瘤杂志, 2013, 35(5):356-360.
[24] Wu X, Pertovaara H, Korkola P, et al. Glucose metabolism correlated with cellular proliferation in diffuse large B-cell lymphoma[J]. Leuk Lymphoma, 2012, 53(3):400-405.
[25] Papajík T, Mysliveöek M, Sedová Z, et al. Standardised uptake value of 18F-FDG on staging PET/CT in newly diagnosed patients with different subtypes of non-Hodgkin′s lymphoma[J]. Eur J Haematol, 2011, 86(1):32-37.
[26] Tang B, Malysz J, Douglas-Nikitin V, et al. Correlating metabolic activity with cellular proliferation in follicular lymphomas[J]. Mol Imaging Biol, 2009, 11(5):296-302.
[27] Watanabe R, Tomita N, Takeuchi K, et al. SUVmax in FDG-PET at the biopsy site correlates with the proliferation potential of tumor cells in non-Hodgkin lymphoma[J]. Leuk Lymphoma, 2010, 51(2):279-283.
[28] Schöder H, Noy A, Gönen M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin′s lymphoma[J]. J Clin Oncol, 2005, 23(21):4643-4651.
[29] Hutchings M, Loft A, Hansen M, et al. Different histopathological subtypes of Hodgkin lymphoma show significantly different levels of FDG uptake[J]. Hematol Oncol, 2006, 24(3):146-150.
[30] Wu X, Pertovaara H, Korkola P, et al. Early interim PET/CT predicts post-treatment response in diffuse large B-cell lymphoma[J]. Acta Oncol, 2014, 53(8):1093-1099.
[31] Baba S, Abe K, Isoda T, et al. Impact of FDG-PET/CT in the management of lymphoma[J]. Ann Nucl Med, 2011, 25(10):701-716.
[32] Freudenberg LS, Antoch G, Schütt P, et al. FDG-PET/CT in re-staging of patients with lymphoma[J]. Eur J Nucl Med Mol Imaging, 2004, 31(3):325-329.
[33] Wahl RL, Jacene H, Kasamon Y, et al. From RECIST to PERCIST:evolving considerations for PET response criteria in solid tumors[J]. J Nucl Med, 2009, 50(Suppl 1):122S-150.
[34] Karam M, Ata A, Irish K, et al. FDG positron emission tomography/computed tomography scan May identify mantle cell lymphoma patients with unusually favorable outcome[J]. Nucl Med Commun, 2009, 30(10):770-778.
[35] Tychyj-Pinel C, Ricard F, Fulham M, et al. PET/CT assessment in follicular lymphoma using standardized criteria:central review in the PRIMA study[J]. Eur J Nucl Med Mol Imaging, 2014, 41(3):408-415.
[36] Sasanelli M, Meignan M, Haioun C, et al. Pretherapy metabolic tumour volume is an Independent predictor of outcome in patients with diffuse large B-cell lymphoma[J]. Eur J Nucl Med Mol Imaging, 2014, 41(11):2017-2022.
[37] Song MK, Chung JS, Shin HJ, et al. Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement[J]. Ann Hematol, 2012, 91(5):697-703.
[38] Song MK, Chung JS, Lee JJ, et al. Metabolic tumor volume by positron emission tomography/computed tomography as a clinical parameter to determine therapeutic modality for early stage Hodgkin′s lymphoma[J]. Cancer Sci, 2013, 104(12):1656-1661.
[39] Song MK, Chung JS, Shin HJ, et al. Prognostic value of metabolic tumor volume on PET/CT in primary gastrointestinal diffuse large B cell lymphoma[J]. Cancer Sci, 2012, 103(3):477-482.
[40] Kim CY, Hong CM, Kim DH, et al. Prognostic value of whole-body metabolic tumour volume and total lesion glycolysis measured on 18F-FDG PET/CT in patients with extranodal NK/T-cell lymphoma[J]. Eur J Nucl Med Mol Imaging, 2013, 40(9):1321-1329.
[41] Song MK, Chung JS, Shin HJ, et al. Clinical value of metabolic tumor volume by PET/CT in extranodal natural killer/T cell lymphoma[J]. Leuk Res, 2013, 37(1):58-63.
[42] Esfahani SA, Heidari P, Halpern EF, et al. Baseline total lesion glycolysis measured with 18F-FDG PET/CT as a predictor of progression-free survival in diffuse large B-cell lymphoma:a pilot study[J]. Am J Nucl Med Mol Imaging, 2013, 3(3):272-281.
[43] Manohar K, Mittal BR, Bhattacharya A, et al. Prognostic value of quantitative parameters derived on initial staging 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with high-grade non-Hodgkin′s lymphoma[J]. Nucl Med Commun, 2012, 33(9):974-981.
[44] Adams HJ, De Klerk JM, Fijnheer RA, et al. Prognostic superiority of the National Comprehensive Cancer Network International Prognostic Index over pretreatment whole-body volumetric-metabolic FDG-PET/CT metrics in diffuse large B-cell lymphoma[J]. Eur J Haematol, 2015, 94(6):532-539.
[45] Gallicchio R, Mansueto G, Simeon V, et al. F-18 FDG PET/CT quantization parameters as predictors of outcome in patients with diffuse large B-cell lymphoma[J]. Eur J Haematol, 2014, 92(5):382-389.