[1] Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding[J]. Science, 2009, 323(5922): 1718-1722.  doi: 10.1126/science.1168750
[2] Kannan P, John C, Zoghbi SS, et al. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications[J]. Clin Pharmacol Ther, 2009, 86(4): 368-377.  doi: 10.1038/clpt.2009.138
[3] Hendrikse NH, Schinkel AH, de Vries EG, et al. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography[J]. Br J Pharmacol, 1998, 124(7): 1413-1418.  doi: 10.1038/sj.bjp.0701979
[4] Hendrikse NH, de Vries EG, Eriks-Fluks L, et al. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier[J]. Cancer Res, 1999, 59(10): 2411-2416.
[5] Sasongko L, Link JM, Muzi M, et al. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography[J]. Clin Pharmacol Ther, 2005, 77(6): 503-514.  doi: 10.1016/j.clpt.2005.01.022
[6] Chung FS, Eyal S, Muzi M, et al. Positron emission tomography imaging of tissue P-glycoprotein activity during pregnancy in the non-human primate[J]. Br J Pharmacol, 2010, 159(2): 394-404.  doi: 10.1111/j.1476-5381.2009.00538.x
[7] Eyal S, Chung FS, Muzi M, et al. Simultaneous PET imaging of P-glycoprotein inhibition in multiple tissues in the pregnant nonhuman primate[J]. J Nucl Med, 2009, 50(5): 798-806.  doi: 10.2967/jnumed.108.059360
[8] Zoghbi SS, Liow JS, Yasuno F, et al. 11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux[J]. J Nucl Med, 2008, 49(4): 649-656.
[9] Kreisl WC, Liow JS, Kimura N, et al. P-glycoprotein function at the blood-brain barrier in humans can be quantified with the substrate radiotracer 11C-N-desmethyl-loperamide[J]. J Nucl Med, 2010, 51(4): 559-566.
[10] Lazarova N, Zoghbi SS, Hong J, et al. Synthesis and evaluation of[N-methyl-11C]N-desmethyl-loperamide as a new and improved PET radiotracer for imaging P-gp function[J]. J Med Chem, 2008, 51(19): 6034-6043.  doi: 10.1021/jm800510m
[11] Liow JS, Kreisl W, Zoghbi SS, et al. P-glycoprotein function at the blood-brain barrier imaged using 11C-N-desmethyl-loperamide in monkeys[J]. J Nucl Med, 2009, 50(1): 108-115.
[12] Seneca N, Zoghbi SS, Shetty HU, et al. Effects of ketoconazole on the biodistribution and metabolism of[11C] loperamide and[11C] N-desmethyl-loperamide in wild-type and P-gp knockout mice[J]. Nucl Med Biol, 2010, 37(3): 335-345.
[13] Jonsson O, Behnam-Motlagh P, Persson M, et al. Increase in doxorubicin cytotoxicity by carvedilol inhibition of P-glycoprotein activity[J]. Biochem Pharmacol 1999, 58(11): 1801-1806.  doi: 10.1016/S0006-2952(99)00262-2
[14] Bart J, Dijkers EC, Wegman TD, et al. New positron emission tomography tracer[11C]carvedilol reveals P-glycoprotein modulation kinetics[J]. Br J Pharmacol, 2005, 145(8): 1045-1051.  doi: 10.1038/sj.bjp.0706283
[15] Luna-Tortos C, Fedrowitz M, Loscher W, et al. Several major antiepileptic drugs are substrates for human P-glycoprotein[J]. Neuropharmacology, 2008, 55(8): 1364-1375.  doi: 10.1016/j.neuropharm.2008.08.032
[16] Baron JC, Roeda D, Munari C, et al. Brain regional pharmacokinetics of 11C-labeled diphenylhydantoin: positron emission tomography in humans[J]. Neurology, 1983, 33(5): 580-585.  doi: 10.1212/WNL.33.5.580
[17] Schinkel AH, Mayer U, Wagenaar E, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type(drug-transporting)P-glycoproteins[J]. Proc Natl Acad Sci U S A, 1997, 94(8): 4028-4033.  doi: 10.1073/pnas.94.8.4028
[18] Kiesewetter DO, Jagoda EM, Kao CH, et al. Fluoro-, bromo-, and iodopaclitaxel derivatives: synthesis and biological evaluation[J]. Nucl Med Biol, 2003, 30(1): 11-24.
[19] Hsueh WA, Kesner AL, Gangloff A, et al. Predicting chemotherapy response to paclitaxel with 18F-Fluoropaclitaxel and PET[J]. J Nucl Med, 2006, 47(12): 1995-1999.
[20] Laćan G, Plenevaux A, Rubins DJ, et al. Cyclosporine, a P-glycoprotein modulator, increases[18F] MPPF uptake in rat brain and peripheral tissues: microPET and ex vivo studies[J]. Eur J Nucl Med Mol Imaging, 2008, 35(12): 2256-2266.  doi: 10.1007/s00259-008-0832-z
[21] Kawamura K, Yamasaki T, Yui J, et al. In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using[11C]gefitinib[J]. Nucl Med Biol, 2009, 36(3): 239-246.
[22] Levchenko A, Mehta BM, Lee JB, et al. Evaluation of 11C-colchicine for PET imaging of multiple drug resistance[J]. J Nucl Med, 2000, 41(3): 493-501.
[23] van Waarde A, Ramakrishnan NK, Rybczynska AA, et al. Synthesis and preclinical evaluation of novel PET probes for P-glycoprotein function and expression[J]. J Med Chem, 2009, 52(14): 4524-4532.  doi: 10.1021/jm900485a
[24] Seo S, Hatano E, Higashi T, et al. P-glycoprotein expression affects 18F-fluorodeoxyglucose accumulation in hepatocellular carcinoma in vivo and in vitro[J]. Int J Oncol, 2009, 34(5): 1303-1312.
[25] Yu C, Wan W, Zhang B, et al. Evaluation of the relationship between[18F]FDG and P-glycoprotein expression: an experimental study[J]. Nucl Med Biol 2012, 39(5): 671-678.  doi: 10.1016/j.nucmedbio.2011.12.007
[26] Luurtsema G, Schuit RC, Klok RP, et al. Evaluation of[11C] laniquidar as a tracer of P-glycoprotein: radiosynthesis and biodistribution in rats[J]. Nucl Med Biol, 2009, 36(6): 643-649.  doi: 10.1016/j.nucmedbio.2009.03.004
[27] Dorner B, Kuntner C, Bankstahl JP, et al. Synthesis and small-animal positron emission tomography evaluation of[11C]-elacridar as a radiotracer to assess the distribution of P-glycoprotein at the blood-brain barrier[J]. J Med Chem, 2009, 52(19): 6073-6082.  doi: 10.1021/jm900940f
[28] Kawamura K, Yamasaki T, Konno F, et al. Evaluation of limiting brain penetration related to P-glycoprotein and breast cancer resistance protein using[11C]GF120918 by PET in mice[J]. Mol Imaging Biol, 2011, 13(1): 152-160.
[29] Bauer F, Kuntner C, Bankstahl JP, et al. Synthesis and in vivo evaluation of[11C]tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor[J]. Bioorg Med Chem, 2010, 18(15): 5489-5497.  doi: 10.1016/j.bmc.2010.06.057
[30] Kawamura K, Konno F, Yui J, et al. Synthesis and evaluation of[11C]XR9576 to assess the function of drug efflux transporters using PET[J]. Ann Nucl Med, 2010, 24(5): 403-412.  doi: 10.1007/s12149-010-0373-y
[31] Yamasaki T, Kawamura K, Hatori A, et al. PET study on mice bearing human colon adenocarcinoma cells using[11C]GF120918, a dual radioligand for P-glycoprotein and breast cancer resistance protein[J]. Nucl Med Commun, 2010, 31(11): 985-993.  doi: 10.1097/MNM.0b013e32833fbf87
[32] Kannan P, Brimacombe KR, Zoghbi SS, et al. N-desmethyl-loperamide is selective for P-glycoprotein amony three ATP-binding cassette transporters at the blood-brain[J]. Drug Metab Dispos, 2010, 38(6): 917-922.  doi: 10.1124/dmd.109.031161
[33] Kawamura K, Yamasaki T, Konno F, et al. Synthesis and in vivo evaluation of 18F-fluoroethyl GF120918 and XR9576 as positron emission tomography probes for assessing the function of drug efflux transporters[J]. Bioorg Med Chem, 2011, 19(2): 861-870.  doi: 10.1016/j.bmc.2010.12.004
[34] Mairinger S, Erker T, Muller M, et al. PET and SPECT radiotracers to assess function and expression of ABC transporters in vivo[J]. Curr Drug Metab 2011, 12(8): 774-792.  doi: 10.2174/138920011798356980