[1] von Lewinski D, Gasser R, Rainer PP, et al. Functional effects of glucose transporters in human ventricular myocardium. Eur J Heart Fail, 2010, 12(2): 106-113.
[2] Abel ED. Glucose transport in the heart. Front Biosci, 2004, 9: 201-215.  doi: 10.2741/1216
[3] Steinbusch LK, Schwenk RW, Ouwens DM, et al. Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci, 2011, 68(15): 2525-2538.  doi: 10.1007/s00018-011-0690-x
[4] Russell C, Stagg SM. New insights into the structural mechanisms of the COPⅡ coat. Traffic, 2010, 11(3): 303-310.
[5] Foley K, Boguslavsky S, Klip A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry, 2011, 50(15): 3048-3061.  doi: 10.1021/bi2000356
[6] Schwenk RW, Dirkx E, Coumans WA, et al. Requirement for distinct vesicle-associated membrane proteins in insulin-and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia, 2010, 53(10): 2209-2219.  doi: 10.1007/s00125-010-1832-7
[7] Sheena A, Mohan SS, Haridas NP, et al. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations. PLoS One, 2011, 6(10): e25747.  doi: 10.1371/journal.pone.0025747
[8] Stöckli J, Fazakerley DJ, James DE. GLUT4 exocytosis. J Cell Sci, 2011, 124(24): 4147-4159.  doi: 10.1242/jcs.097063
[9] Sparling DP, Griesel BA, Weems J, et al. GLUT4 Enhancer Factor (GEF) Interacts with MEF2A and HDAC5 to Regulate the GLUT4 Promoter in Adipocytes. J Biol Chem, 2008, 283(12): 7429-7437.  doi: 10.1074/jbc.M800481200
[10] Magnoni LJ, Vraskou Y, Palstra AP, et al. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS One, 2012, 7(2): e31219.  doi: 10.1371/journal.pone.0031219
[11] Holmes BF, Sparling DP, Olson AL, et al. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab, 2005, 289(6): E1071-1076.  doi: 10.1152/ajpendo.00606.2004
[12] Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev, 2009, 89(3): 1025-1078.
[13] Fujii N, Jessen N, Goodyear LJ. AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab, 2006, 291(5): E867-877.  doi: 10.1152/ajpendo.00207.2006
[14] Li J, Miller EJ, Ninomiya-Tsuji J, et al. AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Circ Res, 2005, 97(9): 872-879.  doi: 10.1161/01.RES.0000187458.77026.10
[15] Montessuit C, Rosenblatt-Velin N, Papageorgiou I, et al. Regulation of glucose transporter expression in cardiac myocytes: p38 MAPK is a strong inducer of GLUT4. Cardiovasc Res, 2004, 64(1): 94-104.
[16] Ojuka EO, Jones TE, Nolte LA, et al. Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca2++. Am J Physiol Endocrinol Metab, 2002, 282(5): E1008-1013.  doi: 10.1152/ajpendo.00512.2001
[17] Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab, 2007, 5(4): 237-252.
[18]

Steinbusch LKM. CD36: a target to restore cardiac function in type 2 diabetes. Maastricht: Box press BV, Proefschriftmaken. nl, 2011.

[19] Luiken JJ, Vertommen D, Coort SL, et al. Identification of protein kinase D as a novel contraction-activated kinase linked to GLUT4-mediated glucose uptake, independent of AMPK. Cell Signal, 2008, 20(3): 543-556.
[20] Egert S, Nguyen N, Schwaiger M. Contribution of alpha-adrenergic and beta-adrenergic stimulation to ischemia-induced glucose trans-porter (GLUT) 4 and GLUT1 translocation in the isolated perfused rat heart. Circ Res, 1999, 84(12): 1407-1415.  doi: 10.1161/01.RES.84.12.1407
[21] Wu-Wong JR, Berg CE, Dayton BD. Endothelin-stimulated glucose uptake: effects of intracellular Ca2++, cAMP and glucosamine. Clin Sci (Lond), 2002, 103 suppl48: S418-423.
[22] Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev, 2005, 85(3): 1093-1129.
[23] d'Agostino C, Labinskyy V, Lionetti V, et al. Altered cardiac metabolic phenotype after prolonged inhibition of NO synthesis in chronically instrumented dogs. Am J Physiol Heart Circ Physiol, 2006, 290(4): H1721-1726.  doi: 10.1152/ajpheart.00745.2005
[24] Depré C, Vanoverschelde JL, Goudemant JF, et al. Protection against ischemic injury by nonvasoactive concentrations of nitric oxide synthase inhibitors in the perfused rabbit heart. Circulation, 1995, 92(7): 1911-1918.  doi: 10.1161/01.CIR.92.7.1911
[25] Sun D, Nguyen N, DeGrado TR, et al. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation, 1994, 89(2): 793-798.  doi: 10.1161/01.CIR.89.2.793
[26] Young LH, Renfu Y, Russell R, et al. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation, 1997, 95(2): 415-422.  doi: 10.1161/01.CIR.95.2.415
[27] Egert S, Nguyen N, Brosius FC 3rd, et al. Effects of wortmannin on insulin-and ischemia-induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovasc Res, 1997, 35(2): 283-293.
[28] McFalls EO, Murad B, Haspel HC, et al. Myocardial glucose uptake after dobutamine stress in chronic hibernating swine myocardium. J Nucl Cardiol, 2003, 10(4): 385-394.  doi: 10.1016/S1071-3581(03)00431-8
[29] Schertzer JD, Antonescu CN, Bilan PJ, et al. A transgenic mouse model to study glucose transporter 4myc regulation in skeletal muscle. Endocrinology, 2009, 150(4): 1935-1940.  doi: 10.1210/en.2008-1372
[30] Klocke R, Tian W, Kuhlmann MT, et al. Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res, 2007, 74(1): 29-38.
[31] Zaha V, Nitschke R, Göbel H, et al. Discrepancy between GLUT4 translocation and glucose uptake after ischemia. Mol Cell Biochem, 2005, 278(1-2): 129-137.  doi: 10.1007/s11010-005-7154-2
[32] Weiss RG, Chatham JC, Georgakopolous D, et al. An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB J, 2002, 16(6): 613-615.  doi: 10.1096/fj.01-0462fje
[33] Belke DD, Larsen TS, Gibbs EM, et al. Glucose metabolism in perfused mouse hearts overexpressing human GLUT-4 glucose transporter. Am J Physiol Endocrinol Metab, 2001, 280(3): E420-427.  doi: 10.1152/ajpendo.2001.280.3.E420
[34] 龚菁, 王红月, 浦介麟, 等.中华实验猪慢性心肌缺血心肌葡萄糖及脂肪酸代谢相关酶的变化.中华医学杂志, 2008, 88(31): 2209-2213.  doi: 10.3321/j.issn:0376-2491.2008.31.013
[35] Murray AJ, Lygate CA, Cole MA, et al. Insulin resistance, abnormal energy metabolism and increased ischemic damage in the chronically infarcted rat heart. Cardiovasc Res, 2006, 71(1): 149-157.
[36] McFalls EO, Murad B, Liow JS, et al. Glucose uptake and glycogen levels are increased in pig heart after repetitive ischemia. Am J Physiol Heart Circ Physiol, 2002, 282(1): H205-211.  doi: 10.1152/ajpheart.2002.282.1.H205