[1] Hoekstra CJ, Stroobants SG, Smit EF, et al.Prognostic relevance of response evaluation using[18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol, 2005, 23(33):8362-8370.
[2] Rosenbaum S J, Stergar H, Antoch G, et al. Staging and follow-up of gastrointestinal tumors with PET/CT. Abdom Imaging, 2006, 31(1):25-35.
[3] Scheidhauer K, Walter C, Seemann MD. FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions. Eur J Nucl Med Mol Imaging, 2004, 31(Suppl 1):S70-S79.
[4] Niederkohr RD, Rosenberg J, Shabo G, et al. Clinical value of including the head and lower extremities in 18F-FDG PET/CT imaging for patients with malignant melanoma. Nucl Med Commun, 2007, 28(9):688-695.
[5] Hany TF, Steinert HC, Goerres GW, et al. PET diagnostic accuracy:improvement with in-line PET/CT system:initial results. Radiology, 2002, 225(2):575-581.
[6] Beyer T, Antoch G, Bockisch A, et al. Optimized intravenous contrast administration for diagnostic whole-body 18F-FDG PET/CT. J Nucl Med, 2005, 46(3):429-435.
[7] Belhocine T, Weiner SM, Brink I, et al. A plea for the elective inclusion of the brain in routine whole-body FDG PET. Eur J Nucl Med Mol Imaging, 2005, 32(3):251-256.
[8] Antoch G, Vogt FM, Veit P, et al. Assessment of liver tissue after radiofrequency ablation:findings with different imaging procedures. J Nucl Med, 2005, 46(3):520-525.
[9] Veit P, K uhle C, Beyer T, et al. Whole body positron emission tomography/computed tomography (PET/CT) tumour staging with integrated PET/CT colonography:technical feasibility and first experiences in patients with colorectal cancer. Gut, 2006, 55(1):68-73.
[10] Ceresoli GL, Cattaneo GM, Castellone P, et al. Role of computed tomography and[18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer:a comparison with standard techniques with and without elective nodal irradiation. Tumori, 2007, 93(1):88-96.
[11] Beyer T, Tellmann L, Nickel I, et al. On the use of positioning aids to reduce misregistration in the head and neck in whole-body PET/CT studies. J Nucl Med, 2005, 46(4):596-602.
[12] Antoch G, Kuehl H, Kanja J, et al. Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts:introduction and evaluation. Radiology, 2004, 230(3):879-885.
[13] Antoch G, Freudenberg LS, Beyer T, et al. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med, 2004, 45(Suppl 1):56S-65S.
[14] Antoch G, Freudenberg LS, Egelhof T, et al. Focal tracer uptake:a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med, 2002, 43(10):1339-1342.
[15] Nakamoto Y, Chin BB, Kraitchman DL, et al. Effects of nonionic intravenous contrast agents at PET/CT imaging:phantom and canine studies. Radiology, 2003, 227(3):817-824.
[16] Yan YY, Chan WS, Tam YM, et al. Application of intravenous contrast in PET/CT:does it really introduce significant attenuation correction error?. J Nucl Med, 2005, 46(2):283-291.
[17] Goerres GW, Kamel E, Heidelberg TN, et al. PET/CT image coregistration in the thorax:influence of respiration. Eur J Nucl Med Mol Imaging, 2002, 29(3):351-360.
[18] Beyer T, Antoch G, Blodgett T, et al. Dual-modality PET/CT imaging:the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging, 2003, 30(4):588-596.
[19] Brenner DJ. Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology, 2004, 231(2):440-445.
[20] Brix G, Lechel U, Glatting G,et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med, 2005, 46(4):608-613.
[21] Kamel E, Hany TF, Burger C, et al. CT vs 68Ge attenuation correction in a combined PET-CT system:evaluation of the effect of lowering the CT tube current. Eur J Nucl Med Mol Imaging, 2002,29(3):346-350.
[22] Pottgen C, Levegrun S, Theegarten D, et al. Value of 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res, 2006, 12(1):97-106.
[23] Czernin J, Auerbach MA. Clinical PET/CT imaging:promises and misconceptions. Nuklearmedizin, 2005, 44(Suppl 1):S18-S23.
[24] Zhu X, Yu J, Huang Z. Low-dose chest CT:optimizing radiation protection for patients. AJR Am J Roentgenol, 2004, 183(3):809-816.
[25] Lee KS, Primack SL, Staples CA, et al. Chronic infiltrative lung disease:comparison of diagnostic accuracies of radiography and lowand conventional dose thin-section CT. Radiology, 1994, 191(3):669.
[26] LodgeMA, Lucas JD, Marsden PK, et al. A PET study of FDG uptake in soft tissue masses. Eur J Nucl Med, 1999, 26(1):22-30.
[27] Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory process. J Nucl Med, 2001, 42(9):1412-1417.
[28] Hickeson M, Zhuang HM, Chacko T, et al. Superiority of dual versus single time point FDG PET imaging in the assessment of pulmonary nodules. J Nucl Med, 2002, 43(Suppl):155.
[29] Dobert N, Hamscho N, Menzel C, et al. Limitations of dual time point FDG-PET imaging in the evaluation of focal abdominal lesions. Nuklear medizin, 2004, 43(5):143-149.
[30] Nehmeh SA, Erdi YE, Pan T, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys, 2004, 31(12):3179-3186.