[1] Demuth I, Digweed M. T The clinical manifestation of a defective response to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome. Oncogene, 2007, 26(56): 7792-7798.  doi: 10.1038/sj.onc.1210876
[2] Yano K, Morotomi-Yano K, Adachi N, et al. Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway. J Radiat Res, 2009, 50(2): 97-108.  doi: 10.1269/jrr.08119
[3] Liu Y, Tarsounas M, O'regan P, et al. Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J Biol Chem, 2007, 282(3): 1973-1979.  doi: 10.1074/jbc.M609066200
[4] 杨青山,樊飞跃. Ku蛋白与DNA修复. 国际放射医学核医学杂志,2008,32(1): 40-43.
[5] 程晋. DNA损伤修复及细胞周期检控点激活的研究进展. 国际放射医学核医学杂志, 2009, 33(6): 360-364.
[6] Roberts SA, Ramsden DA. Loading of the nonhomologous end joining factor, Ku, on protein-occluded DNA ends. J Biol Chem, 2007, 282(14): 10605-10613.  doi: 10.1074/jbc.M611125200
[7] Mari PO, Florea BI, Persengiev SP, et al. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci USA, 2006,103(49): 18597-18602.  doi: 10.1073/pnas.0609061103
[8] Evans JW, Liu XF, Kirchgessner CU, et al. Induction and repair of chromosome aberrations in scid cells measured by premature chromosome condensation. Radiat Res, 1996, 145(1): 39-46.  doi: 10.2307/3579193
[9] Simsek D, Jasin M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol, 2010, 17(4): 410-416.  doi: 10.1038/nsmb.1773
[10] Nasiri M, Saadat I, Omidvari S, et al. Genetic variation in DNA repair gene XRCC7(G6721T) and susceptibility to breast cancer. Gene, 2012, 505(1): 195-197.  doi: 10.1016/j.gene.2012.04.065
[11] Shammas MA, Shmookler Reis RJ, Koley H, et al. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood, 2009, 113(10): 2290-2297.  doi: 10.1182/blood-2007-05-089193
[12] Kuznetsov SG, Haines DC, Martin BK, et al. Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice. Cancer Res, 2009, 69(3): 863-872.  doi: 10.1158/0008-5472.CAN-08-3057
[13] 王芹. X射线修复交叉互补基因功能的研究进展. 国外医学放射医学核医学分册, 2005, 29(3): 132-136.
[14] Tambini CE, Spink KG, Ross CJ, et al. The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair (Amst), 2010, 9(5): 517-525.  doi: 10.1016/j.dnarep.2010.01.016
[15] Johnson RD, Liu N, Jasin M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature, 1999, 401(6751): 397-399.
[16] 张占春. 电离辐射损伤与DNA修复基因. 国外医学放射医学核医学分册,2004,28(1): 26-29 .
[17] Fan S, Meng Q, Auborn K, et al. BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer, 2006, 94(3): 407-426.  doi: 10.1038/sj.bjc.6602935