[1] Zaman AG, Helft G, Worthley SG, et al. The role of plaque rupture and thrombosis in coronary artery disease[J].Atherosclerosis, 2000, 149(2):251-266.
[2] Prati F, Arbustini E, Labellarte A, et al. Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries[J]. Heart, 2001, 85(5):567.
[3] Gronholdt ML. B-mode ultrasound and spiral CT for the assessment of carotid atherosclerosis[J]. Neuroimag Clin N Am, 2002, 12(3):421-435.
[4] Budoff MJ, Raggi P. Coronary artery disease progression assessed by electron-beam computed tomography[J]. Am J Cardiol, 2001, 88(2A):46E-50E.
[5] Prigent FM, Steingart RM. Clinical value of electron-beam computed tomography in the diagnosis ang prognosis of coronary artery disease[J]. Curr Opin Cardiol, 1997, 12(6):561-565.
[6] Schroeder S, Kopp AF, Ohnesorge B, et al. Virtual coronary angioscopy using multislice computed tomography[J]. Heart,2002, 87(3):205-209.
[7] Shinnar M, Fallon JT, Wehrli S, et al. The diagnostic accuracy of ex vivo MR1 for human atherosclerotic plaque characterization[J]. Arterioscler Thromb Vasc Biol, 1999, 19(11):2756-2761.
[8] Chan SK, Jaffer FA, Botnar RM, et al. Scan reproducibility of magnetic resonance imaging assessment of aortic atherosclerosis burden[J]. J Cardiovasc Magn Reson, 2001,3(4):331-338.
[9] Yuan C, Kerwin WS, Ferguson MS, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization[J]. J Magn Reson Imaging, 2002,15(1):62-67.
[10] Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography[J]. Circulation, 2002,106(13):1640-1645.
[11] Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography[J]. Circulation, 2003, 107(1):113.
[12] Romer TJ, Brennan JF 3rd, Fitzmaurice M, et al.Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy[J]. Circula-tion, 1998, 97(9):878-885.
[13] van dc Poll SW, Romer TJ, Puppels GJ, et al. Imaging of atherosclerosis. Raman spectroscopy of atherosclerosis[J]. J Cardiovasc Risk, 2002, 9(5):255-261.
[14] de Korte CL, Sierevogel MJ, Mastik F, et al. Identification of atherosclerotie plaque components with intravascular ultrasound elastography in vivo:a Yucatan pig study[J]. Circulation, 2002, 105(14):1627-1630.
[15] Stefanadis C, Diamantopoulos L, Demellis J, et al. Heart production of atherosclerotic plaques and inflammation assessel by the acute phase proteins in acute coronary syndromes[J]. J Mol Cell Cardiol, 2000, 32(1):43-52.
[16] Tsimikas S. Noninvasive imaging of oxidized low-density lipoprotein in atherosclerotic plaques with tagged oxidationspecific antibodies[J]. Am J Cardiol, 2002, 90(10c):22L.
[17] Zhang YX, Cao W, Wu ZJ. Radioiodine labeled SP-4 as an imaging agent for atherosclerotic plaques[J]. Nucl Scien Tech, 2000, 11(4):234-237.
[18] Dinkelborg LM, Duda SH, Hanke H, et al. Molecular imaging of atherosclerosis using a technetium-99m-labeled endothelin derivative[J]. J Nucl Med, 1998, 39:1819-1822.
[19] Lederman RJ, Raylman RR, Fisher SJ, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose(FDG)[J]. Nucl Med Commun, 2001,22(7):747-753.
[20] Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with[18F]-fluorodeoxyglucose positron emission tomography[J]. Circulation, 2002, 105(23):2708-2711.
[21] Elmaleh DR, Narula J, Babich JW, et al. Rapid noninvasive detection of experimental atherosclerotic lesion with novel 99mTc-labeled diadenosine tetraphosphates[J]. Proc Natl Acad Sci USA, 1998, 95:691-695.