[1] 张玮, 王利利, 涂彧.  中枢神经系统电离辐射效应的细胞和分子机制研究进展[J]. 国际放射医学核医学杂志, 2008, 32(3): 179-182.   doi: 10.3760/cma.j.issn.1673-4114.2008.03.016
Zhang W, Wang LL, Tu Y.  Research progress on the cellular and molecular mechanisms of the effects of ionizing radiation in the central nervous system[J]. Int J Radiat Med Nucl Med, 2008, 32(3): 179-182.   doi: 10.3760/cma.j.issn.1673-4114.2008.03.016
[2] 黄旭锐, 黄海威.  放射性脑损伤炎症反应机制的研究进展[J]. 中华放射医学与防护杂志, 2018, 38(11): 870-873.   doi: 10.3760/cma.j.issn.0254-5098.2018.11.014
Huang XR, Huang HW.  Advances in the mechanism of inflammatory response to radiation-induced brain injury[J]. Chin J Radiol Med Prot, 2018, 38(11): 870-873.   doi: 10.3760/cma.j.issn.0254-5098.2018.11.014
[3] 贾庆明, 罗海清, 余忠华.  放射性脑损伤发病机制与治疗方法研究进展[J]. 中华实用诊断与治疗杂志, 2018, 32(12): 1236-1239.   doi: 10.13507/j.issn.1674-3474.2018.12.030
Jia QM, Luo HQ, Yu ZH.  Pathogenesis and treatment of radiation-induced brain injury[J]. Chin J Pract Diagn Therapy, 2018, 32(12): 1236-1239.   doi: 10.13507/j.issn.1674-3474.2018.12.030
[4] Peng Y, Lu K, Li ZC, et al.  Blockade of Kv1.3 channels ameliorates radiation-induced brain injury[J]. Neuro Oncol, 2014, 16(4): 528-539.   doi: 10.1093/neuonc/not221
[5]

Lumniczky K, Szatmári T, Sáfrány G. Ionizing radiation-induced immune and inflammatory reactions in the brain[J/OL]. Front Immunol, 2017, 8: 517[2020-05-23]. https://www.frontiersin.org/articles/10.3389/fimmu.2017.00517/full. DOI: 10.3389/fimmu.2017.00517.

[6] Ginhoux F, Greter M, Leboeuf M, et al.  Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845.   doi: 10.1126/science.1194637
[7] 叶子, 景瑾, 张帅, 等.  小胶质细胞的分泌作用对神经损伤后修复的影响[J]. 现代医学与健康研究, 2018, 2(8): 195-196.
Ye Z, Jing J, Zhang S, et al.  Effects of microglia secretion on nerve repair after injury[J]. Mod Med Health Res, 2018, 2(8): 195-196.
[8] 米茹麟, 薛国芳.  小胶质细胞介导的神经炎症在缺血性脑卒中的双相作用[J]. 脑与神经疾病杂志, 2020, 28(9): 591-594.
Mi RL, Xue GF.  The biphasic effect of neuroinflammation mediated by microglia in ischemic stroke[J]. J Brain Nervous Dise, 2020, 28(9): 591-594.
[9] 李晶文, 张丽, 张连峰.  小胶质细胞在神经发育和神经退行性疾病中的吞噬作用与调节机制[J]. 中国比较医学杂志, 2018, 28(4): 120-126, 102.   doi: 10.3969/j.issn.1671-7856.2018.04.022
Li JW, Zhang L, Zhang LF.  Phagocytic function of microglia and underlying regulatory mechanism in neurodevelopment and neurodegenerative diseases[J]. Chin J Comp Med, 2018, 28(4): 120-126, 102.   doi: 10.3969/j.issn.1671-7856.2018.04.022
[10] 高龙飞, 曹贵君, 孟纯阳.  小胶质细胞极化在神经病理性疼痛中的作用研究进展[J]. 中国疼痛医学杂志, 2018, 24(2): 130-134.   doi: 10.3969/j.issn.1006-9852.2018.02.011
Gao LF, Cao GJ, Meng CY.  Research progress on the role of microglial polarization in neuropathic pain[J]. Chin J Pain Med, 2018, 24(2): 130-134.   doi: 10.3969/j.issn.1006-9852.2018.02.011
[11] Wang HX, Liu C, Han M, et al.  TRAM1 promotes microglia M1 polarization[J]. J Mol Neurosci, 2016, 58(2): 287-296.   doi: 10.1007/s12031-015-0678-3
[12]

Wu J, Ding DH, Li QQ, et al. Lipoxin A4 regulates lipopolysaccharide-induced BV2 microglial activation and differentiation via the notch signaling pathway[J/OL]. Front Cell Neurosci, 2019, 13: 19[2020-05-23]. https://www.frontiersin.org/articles/10.3389/fncel.2019.00019/full. DOI: 10.3389/fncel.2019.00019.

[13] 赵方莹, 李礼.  小胶质细胞的发育调控[J]. 中国细胞生物学学报, 2019, 41(10): 1865-1875.   doi: 10.11844/cjcb.2019.10.0003
Zhao FY, Li L.  Microglia development[J]. Chin J Cell Biol, 2019, 41(10): 1865-1875.   doi: 10.11844/cjcb.2019.10.0003
[14] 胡永红, 魏艺聪, 管江丽.  二氢杨梅素对活化的BV2小胶质细胞表型转化的影响[J]. 福建中医药, 2019, 50(1): 64-78.   doi: 10.13260/j.cnki.jfjtcm.011777
Hu YH, Wei YC, Guan JL.  Effects of dihydromyricetin on phenotypic transformation of activated BV2 microglia[J]. Fujian J Tradit Chin Med, 2019, 50(1): 64-78.   doi: 10.13260/j.cnki.jfjtcm.011777
[15]

吴丽蓉. 长春西汀通过下调TLR4/MyD88/NF-кB信号通路减轻脑缺血再灌注后的炎症反应[D]. 重庆: 第三军医大学, 2017.

Wu LR. Vinpocetine by cutting TLR4/MyD88/NF-кB signaling pathway to reduce the inflammatory response after cerebral ischemia reperfusion[D]. Chongqing: Third Military Med Univ, 2017.

[16] 凌真真, 张雪竹.  小胶质细胞及其相关炎性信号通路[J]. 中国免疫学杂志, 2018, 34(11): 1738-1742.   doi: 10.3969/j.issn.1000-484X.2018.11.030
Ling ZZ, Zhang XZ.  Microglia and related inflammatory signaling pathways[J]. Chin J Immunol, 2018, 34(11): 1738-1742.   doi: 10.3969/j.issn.1000-484X.2018.11.030
[17] 向彬, 申婷, 肖纯, 等.  米诺环素对活化小胶质细胞M1/M2极化的影响[J]. 药学学报, 2017, 52(8): 1255-1261.   doi: 10.16438/j.0513-4870.2017-0120
Xiang B, Shen T, Xiao C, et al.  Effect of minocycline on activation of microglia M1/M2 phenotypes[J]. Acta Pharm Sin, 2017, 52(8): 1255-1261.   doi: 10.16438/j.0513-4870.2017-0120
[18] 孙静, 李灿, 马燕, 等.  hADMSCs影响TLR4-TRIF信号通路诱导小鼠小胶质细胞表型极化的实验研究[J]. 四川大学学报: 医学版, 2019, 50(2): 164-170.   doi: 10.13464/j.scuxbyxb.2019.02.004
Sun J, Li C, Ma Y, et al.  Effect of human adipose mesenchymal stem cells on phenotype polarization of mice microglia via TLR3/TRIF signal pathway[J]. J Sichuan Univ (Med Sci Ed), 2019, 50(2): 164-170.   doi: 10.13464/j.scuxbyxb.2019.02.004
[19]

颜南. 氟通过激活MAPK和NF-κB信号通路促进小胶质细胞炎性因子分泌的研究[D]. 辽宁: 中国医科大学, 2018.

Yan N. Study on the role of fluoride in the secretion of inflammatory factors in microglia by activating the MAPK and NF-кB signaling pathways[D]. Liaoning: China Med Univ, 2018.

[20] 陈宾.  MAPK/ERK信号通路在大鼠视神经损伤后小胶质细胞活化中的作用及机制研究[J]. 卒中与神经疾病, 2018, 25(4): 427-430.   doi: 10.3969/j.issn.1007-0478.2018.04.017
Chen B.  The role and mechanism of MAPK/ERK signaling pathway in the activation of microglia after optic nerve injury in rats[J]. Stroke Neuro Dise, 2018, 25(4): 427-430.   doi: 10.3969/j.issn.1007-0478.2018.04.017
[21]

姚琳丽. Notch信号通路对小胶质细胞激活的作用及机制研究[D]. 山东: 山东大学, 2016.

Yao LL. Study on the role and mechanism of Notch signaling pathway on microglia activation[D]. Shandong: Shandong Univ, 2016.

[22] Sha LZ, Wu XF, Yao Y, et al.  Notch signaling activation promotes seizure activity in temporal lobe epilepsy[J]. Mol Neurobiol, 2014, 49(2): 633-644.   doi: 10.1007/s12035-013-8545-0
[23] Wu L, Li YS, Yu MH, et al.  Notch signaling regulates microglial activation and inflammatory reactions in a rat model of temporal lobe epilepsy[J]. Neurochem Res, 2018, 43(6): 1269-1282.   doi: 10.1007/s11064-018-2544-5
[24] Grandbarbe L, Michelucci A, Heurtaux T, et al.  Notch signaling modulates the activation of microglial cells[J]. Glia, 2007, 55(15): 1519-1530.   doi: 10.1002/glia.20553
[25] Deng XL, Feng L, Wang ZX, et al.  The Runx1/Notch1 signaling pathway participates in M1/M2 microglia polarization in a mouse model of temporal lobe epilepsy and in BV-2 cells[J]. Neurochem Res, 2020, 45(9): 2204-2216.   doi: 10.1007/s11064-020-03082-3
[26]

Cao Q, Karthikeyan A, Dheen ST, et al. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling[J/OL]. PLoS One, 2017, 12(10): e0186764[2020-05-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186764. DOI: 10.1371/journal.phoe.0186764.

[27] Wang HZ, Brown J, Gu Z, et al.  Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β–signaling pathways regulates the innate inflammatory response[J]. J Immunol, 2011, 186(9): 5217-5226.   doi: 10.4049/jimmunol.1002513
[28] Hoeflich KP, Luo J, Rubie EA, et al.  Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation[J]. Nature, 2000, 406(6791): 86-90.   doi: 10.1038/35017574
[29] 谈志丽, 钟欢, 朱彤, 等.  糖原合成激酶3β在急性肝衰竭免疫炎症反应中的作用及机制研究进展[J]. 免疫学杂志, 2017, 33(6): 547-552.   doi: 10.13431/j.cnki.immunolj.20170097
Tan ZL, Zhong H, Zhu T, et al.  Study progress in the roles and mechanism of glycogen synthase kinase 3β in the hepatic immune inflammatory responses of acute liver failure[J]. Immunol J, 2017, 33(6): 547-552.   doi: 10.13431/j.cnki.immunolj.20170097
[30]

Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, et al. Different approaches to modulation of microglia phenotypes after spinal cord injury[J/OL]. Front Syst Neurosci, 2019, 13: 37[2020-05-23]. https://www.frontiersin.org/articles/10.3389/fnsys.2019.00037/full. DOI: 10.3389/fns ys.2019.00037.

[31]

何洋. IL-4介导JAK1/STAT6通路诱导小鼠脑出血后M2型小胶质细胞极化发挥神经保护作用[D]. 贵州: 遵义医科大学, 2019.

He Y. The polarization of M2-type microglia induced by IL-4 mediated JAK1/STAT6 pathway after cerebral hemorrhage in mice plays a neuroprotective role[D]. Guizhou: Zunyi Med Univ, 2019.

[32] Clark JD, Flanagan ME, Telliez JB.  Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases[J]. J Med Chem, 2014, 57(12): 5023-5038.   doi: 10.1021/jm401490p
[33] 曾杰, 赵亚林, 邓博文, 等.  JAK2/STAT3信号通路在大脑缺血缺氧后小胶质细胞活化中的作用[J]. 中国骨伤, 2020, 33(2): 190-194.   doi: 10.12200/j.issn.1003-0034.2020.02.020
Zeng J, Zhao YL, Deng BW, et al.  Role of JAK2/STAT3 signaling pathway in microglia activation after hypoxic-ischemic brain damage[J]. China J Orthop Trauma, 2020, 33(2): 190-194.   doi: 10.12200/j.issn.1003-0034.2020.02.020
[34] Emmetsberger J, Tsirka SE.  Microglial inhibitory factor (MIF/TKP) mitigates secondary damage following spinal cord injury[J]. Neurobiology Dis, 2012, 47(3): 295-309.   doi: 10.1016/j.nbd.2012.05.001
[35]

Huang ZK, Luo Q, Guo Y, et al. Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro[J/OL]. PLoS One, 2015, 10(6): e0129744[2020-05-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129744. DOI: 10.1371/journal.pone.0129744.

[36]

卢奎, 张成, 吴文军. CORM-3 介导小胶质细胞 ICAM-1 抑制放射性脑损伤炎症反应[J/OL]. 中华临床医师杂志: 电子版, 2015, 9(4): 602−606[2020-05-23]. https://d.wanfangdata.com.cn/periodical/zhlcyszz201504020. DOI: 10.3877/cma.j.issn.1674-0785.2015.04.020.

Lu K, Zhang C, Wu WJ. The effects of CORM-3 on inflammation of radiation brain injury mediated by ICAM-1expression of microglia[J/OL]. Chin J Clin(Electron Ed), 2015, 9(4): 602−606[2020-05-23]. https://d.wanfangdata.com.cn/periodical/zhlcyszz201504020. DOI: 10.3877/cma.j.issn.1674-0785.2015.04.020.

[37] 郭容, 涂晓坤, 李夏春, 等.  放射性脑损伤的发病机制及药物防治的研究进展[J]. 巴楚医学, 2019, 2(2): 113-117.   doi: 10.3969/j.issn.2096-6113.2019.02.025
Guo R, Tu XK, Li XC, et al.  Research progress on the pathogenesis and drug prevention and treatment of radiation brain injury[J]. Bachu Med J, 2019, 2(2): 113-117.   doi: 10.3969/j.issn.2096-6113.2019.02.025
[38] 刘湄漪, 陈乃耀.  辐射诱导神经炎症反应中小胶质细胞的活化机制[J]. 神经解剖学杂志, 2018, 34(1): 129-132.   doi: 10.16557/j.cnki.1000-7547.2018.01.024
Liu MY, Chen NY.  The activation mechanism of microglia in response to neuroinflammation induced by radiation[J]. Chin J Neuroanat, 2018, 34(1): 129-132.   doi: 10.16557/j.cnki.1000-7547.2018.01.024
[39] Xu L, He D, Bai Y.  Microglia-mediated inflammation and neurodegenerative disease[J]. Mol Neurobiol, 2016, 53(10): 6709-6715.   doi: 10.1007/s12035-015-9593-4
[40]

Deng ZY, Sui GC, Rosa PM, et al. Radiation-induced c-jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells[J/OL]. PLoS One, 2012, 7(5): e36739[2020-05-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036739. DOI: 10.1371/journal.pone.0036739.

[41] Xu PF, Xu YT, Hu B, et al.  Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor[J]. Brain Behav Immun, 2015, 50: 87-100.   doi: 10.1016/j.bbi.2015.06.02