[1]

Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma[J/OL]. Nat Rev Dis Primers, 2016, 2: 16019[2018-04-15]. https://www.nature.com/articles/nrdp201619. DOI: 10.1038/nrdp.2016.19.

[2] Dulku G, Dhillon R, Goodwin M, et al. The role of imaging in the surveillance and diagnosis of hepatocellular cancer[J]. J Med Imaging Radiat Oncol, 2017, 61(2):171-179. DOI:10.1111/1754-9485.12568.
[3] Poon RT, Ng IO, Fan ST, et al. Clinicopathologic features of long-term survivors and disease-free survivors after resection of hepatocellular carcinoma:a study of a prospective cohort[J]. J Clin Oncol, 2001, 19(12):3037-3044. DOI:10.1200/JCO.2001.19.12. 3037.
[4] Warburg O. on respiratory impairment in cancer cells[J]. Science, 1956, 124:269-270.
[5] Kroemer G, Pouyssegur J. Tumor cell metabolism:cancer's Achilles' heel[J]. Cancer Cell, 2008, 13(6):472-482. DOI:10.1016/j.ccr.2008.05.005.
[6] Gatenby RA, Gawlinski ET, Gmitro AF, et al. Acid-mediated tumor invasion:a multidisciplinary study[J]. Cancer Res, 2006, 66(10):5216-5223. DOI:10.1158/0008-5472.CAN-05-4193.
[7] Lemasters JJ, Holmuhamedov EL, Czerny C, et al. Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect[J]. Biochim Biophys Acta, 2012, 1818(6):1536-1544. DOI:10.1016/j.bbamem.2011.11. 034.
[8] Gambhir SS. Molecular imaging of cancer with positron emission tomography[J]. Nat Rev Cancer, 2002, 2(9):683-693. DOI:10.1038/nrc882.
[9] Shang RZ, Qu SB, Wang DS. Reprogramming of glucose metabolism in hepatocellular carcinoma:Progress and prospects[J]. World J Gastroenterol, 2016, 22(45):9933-9943. DOI:10.3748/wjg.v22.i45. 9933.
[10] Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol, 2005, 202(3):654-662. DOI:10.1002/jcp.20166.
[11] Izuishi K, Yamamoto Y, Mori H, et al. Molecular mechanisms of[18F] fluorodeoxyglucose accumulation in liver cancer[J]. Oncol Rep, 2014, 31(2):701-706. DOI:10.3892/or.2013.2886.
[12] Rastogi S, Banerjee S, Chellappan S, et al. Glut-1 antibodies induce growth arrest and apoptosis in human cancer cell lines[J]. Cancer Lett, 2007, 257(2):244-251. DOI:10.1016/j.canlet.2007. 07.021.
[13] Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT):expanded families of sugar transport proteins[J]. Br J Nutr, 2003, 89(1):3-9. DOI:10.1079/BJN2002763.
[14] Brown GK. Glucose transporters:structure, function and consequences of deficiency[J]. J Inherit Metab Dis, 2000, 23(3):237-246.  doi: 10.1023/A:1005632012591
[15] Leturque A, Brot-Laroche E, Le GM, et al. The role of GLUT2 in dietary sugar handling[J]. J Physiol Biochem, 2005, 61(4):529-537.  doi: 10.1007/BF03168378
[16] Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond[J]. Pflugers Arch, 2004, 447(5):619-628. DOI:10.1007/s00424-003-1067-2.
[17] Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis[J]. Cancer Res, 2011, 71(7):2550-2560. DOI:10.1158/0008-5472.CAN-10-2828.
[18] Alves VA, Pinheiro C, Morais-Santos F, et al. Characterization of monocarboxylate transporter activity in hepatocellular carcinoma[J]. World J Gastroenterol, 2014, 20(33):11780-11787. DOI:10.3748/wjg.v20.i33.11780.
[19] Izumi H, Takahashi M, Uramoto H, et al. Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells[J]. Cancer Sci, 2011, 102(5):1007-1013. DOI:10.1111/j.1349-7006.2011.01908.x.
[20] Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis[J]. Cancer Res, 2011, 71(7):2550-2560. DOI:10.1158/0008-5472. CAN-10-2828.
[21] Wilson JE. Isozymes of mammalian hexokinase:structure, subcellular localization and metabolic function[J]. J Exp Biol, 2003, 206(Pt 12):2049-2057.
[22] Lee JD, Yang WI, Park YN, et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased (18)F-FDG uptake[J]. J Nucl Med, 2005, 46(10):1753-1759.
[23] Devic S. Warburg Effect-a Consequence or the Cause of Carcino-genesis[J]. J Cancer, 2016, 7(7):817-822. DOI:10.7150/jca.14274.
[24] Kitamura K, Hatano E, Higashi T, et al. Proliferative activity in hepatocellular carcinoma is closely correlated with glucose metabolism but not angiogenesis[J]. J Hepatol, 2011, 55(4):846-857. DOI:10.1016/j.jhep.2011.01.038.
[25] Cho JH, Kim GY, Mansfield BC, et al. Hepatic glucose-6-phosphatase-α deficiency leads to metabolic reprogramming in glycogen storage disease type Ia[J]. Biochem Biophys Res Commun, 2018, 498(4):925-931. DOI:10.1016/j.bbrc.2018.03.083.
[26] Semenza GL, Roth PH, Fang HM, et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1[J]. J Biol Chem, 1994, 269(38):23757-23763.
[27] Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen tension:HIF1 alpha and adenosine receptors[J]. Nat Rev Immunol, 2005, 5(9):712-721. DOI:10.1038/nri1685.
[28] Nguyen DX, Bos PD, Massagué J. Metastasis:from dissemination to organ-specific colonization[J]. Nat Rev Cancer, 2009, 9(4):274-284. DOI:10.1038/nrc2622.
[29] Agrawal SM, Yong VW. The many faces of EMMPRIN-roles in neuroinflammation[J]. Biochim Biophys Acta, 2011, 1812(2):213-219. DOI:10.1016/j.bbadis.2010.07.018.
[30] Li Y, Xu J, Chen L, et al. HAb18G(CD147), a cancer-associated biomarker and its role in cancer detection[J]. Histopathology, 2009, 54(6):677-687. DOI:10.1111/j.1365-2559.2009.03280.x.
[31] Huang Q, Li J, Xing J, et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway[J]. J Hepatol, 2014, 61(4):859-866. DOI:10.1016/j.jhep.2014.04.035.
[32] Watanabe M, Naraba H, Sakyo T, et al. DNA damage-induced modulation of GLUT3 expression is mediated through p53-independent extracellular signal-regulated kinase signaling in HeLa cells[J]. Mol Cancer Res, 2010, 8(11):1547-1557. DOI:10.1158/1541-7786.MCR-10-0011.
[33] Fan JY, Yang Y, Xie JY, et al. MicroRNA-144 mediates metabolic shift in ovarian cancer cells by directly targeting Glut1[J]. Tumour Biol, 2016, 37(5):6855-6860. DOI:10.1007/s13277-015-4558-9.
[34] Jeon JY, Lee H, Park J, et al. The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2015, 463(3):440-446. DOI:10.1016/j.bbrc.2015.05.103.
[35] Khan MA, Combs CS, Brunt EM, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma[J]. J Hepatol, 2000, 32(5):792-797.  doi: 10.1016/S0168-8278(00)80248-2
[36] Bertagna F, Bertoli M, Bosio G, et al. Diagnostic role of radiolabelled choline PET or PET/CT in hepatocellular carcinoma:a systematic review and meta-analysis[J]. Hepatol Int, 2014, 8(4):493-500. DOI:10.1007/s12072-014-9566-0.
[37] Yamamoto Y, Nishiyama Y, Kameyama R, et al. Detection of hepatocellular carcinoma using 11C-choline PET:comparison with 18F-FDG PET[J]. J Nucl Med, 2008, 49(8):1245-1248. DOI:10.2967/jnumed.108.052639.
[38] Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses[J]. J Nucl Med, 2003, 44(2):213-221.
[39] Li S, Peck-Radosavljevic M, Ubl P, et al. The value of[11C]-acetate PET and[18F]-FDG PET in hepatocellular carcinoma before and after treatment with transarterial chemoembolization and bevacizumab[J]. Eur J Nucl Med Mol Imaging, 2017, 44(10):1732-1741. DOI:10.1007/s00259-017-3724-2.
[40] Wu HB, Wang QS, Li BY, et al. F-18 FDG in conjunction with 11C-choline PET/CT in the diagnosis of hepatocellular carcinoma[J]. Clin Nucl Med, 2011, 36(12):1092-1097. DOI:10.1097/RLU.0b013e3182335df4.
[41] Castilla-Lièvre MA, Franco D, Gervais P, et al. Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma[J]. Eur J Nucl Med Mol Imaging, 2016, 43(5):852-859. DOI:10.1007/s00259-015-3241-0.
[42] Davila JA, Kramer JR, Duan Z, et al. Referral and receipt of treatment for hepatocellular carcinoma in United States veterans:effect of patient and nonpatient factors[J]. Hepatology, 2013, 57(5):1858-1868. DOI:10.1002/hep.26287.
[43]

Orcutt ST, Anaya DA. Liver Resection and Surgical Strategies for Management of Primary Liver Cancer[J/OL]. Cancer Control, 2018, 25(1): 1073274817744621[2018-04-15].https://www.ncbi.nlm.nih.gov/pubmed/29327594. DOI: 10.1177/1073274817744621.

[44] Sung PS, Park HL, Yang K, et al. 18F-fluorodeoxyglucose uptake of hepatocellular carcinoma as a prognostic predictor in patients with sorafenib treatment[J]. Eur J Nucl Med Mol Imaging, 2018, 45(3):384-391. DOI:10.1007/s00259-017-3871-5.
[45] Takeuchi S, Rohren EM, Abdel-Wahab R, et al. Refining prognosis in patients with hepatocellular carcinoma through incorporation of metabolic imaging biomarkers[J]. Eur J Nucl Med Mol Imaging, 2017, 44(6):969-978. DOI:10.1007/s00259-016-3583-2.
[46] Sun M, Zhang G, Guo J, et al. Prognostic value of pretreatment PET/CT lean body mass-corrected parameters in patients with hepatocellular carcinoma[J]. Nucl Med Commun, 2018, 39(6):564-571. DOI:10.1097/MNM.0000000000000842.
[47] Kroemer G, Pouyssegur J. Tumor cell metabolism:cancer's Achilles' heel[J]. Cancer Cell, 2008, 13(6):472-482. DOI:10.1016/j.ccr.2008.05.005.