[1] Ferlay J, Soerjomataram I, Dikshit R, et al.  Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-E386.   doi: 10.1002/ijc.29210
[2]

Gridelli C, Rossi A, Carbone DP, et al. Non-small-cell lung cancer[J/OL]. Nat Rev Dis Primers, 2015, 1: 15009[2019-06-23].https://www.nature.com/articles/nrdp20159. DOI: 10.1038/nrdp.2015.9.

[3] 王振光, 于明明, 杨光杰, 等.  非小细胞肺癌和肺炎性病变摄取18F-FDG与Glut-1、Glut-3、HK-Ⅱ表达的相关性[J]. 中华核医学与分子影像杂志, 2018, 38(9): 605-608.   doi: 10.3760/cma.j.issn.2095-2848.2018.09.006
Wang ZG, Yu MM, Yang GJ, et al.  Correlation of Glut-1, Glut-3 and HK-H expression with 18F-FDG uptake in non-small cell lung cancer and pulmonary inflammatory lesions[J]. Chin J Nucl Med Mol Imaging, 2018, 38(9): 605-608.   doi: 10.3760/cma.j.issn.2095-2848.2018.09.006
[4] D'Amico A.  Review of clinical practice utility of positron emission tomography with 18F-fluorodeoxyglucose in assessing tumour response to therapy[J]. Radiol Med, 2015, 120(4): 345-351.   doi: 10.1007/s11547-014-0446-4
[5] Lim R, Eaton A, Lee NY, et al.  18F-FDG PET/CT metabolic tumor volume and total lesion glycolysis predict outcome in oropharyngeal squamous cell carcinoma[J]. J Nucl Med, 2012, 53(10): 1506-1513.   doi: 10.2967/jnumed.111.101402
[6] Shaw AT, Kim DW, Nakagawa K, et al.  Crizotinib versus chemotherapy in advanced ALK-positive lung cancer[J]. N Engl J Med, 2013, 368(25): 2385-2394.   doi: 10.1056/NEJMoa1214886
[7] Ettinger DS, Aisner DL, Wood DE, et al.  NCCN Guidelines Insights: Non-small cell lung cancer, version 5.2018[J]. J Natl Compr Canc Netw, 2018, 16(7): 807-821.   doi: 10.6004/jnccn.2018.0062
[8] de Geus-Oei LF, van Krieken JH, Aliredjo RP, et al.  Biological correlates of FDG uptake in non-small cell lung cancer[J]. Lung Cancer, 2007, 55(1): 79-87.   doi: 10.1016/j.lungcan.2006.08.018
[9] 杨雪, 陈含笑, 张弘, 等.  NSCLC携带EGFR少见突变分析及EGFR-TKIs疗效初步观察[J]. 中国肺癌杂志, 2015, 18(8): 493-499.   doi: 10.3779/j.issn.1009-3419.2015.08.04
Yang X, Chen HX, Zhang H, et al.  Effectiveness of tyrosine kinase inhibitors on uncommon epidermal growth factor receptor mutations in non-small cell lung cancer[J]. Chin J Lung Cancer, 2015, 18(8): 493-499.   doi: 10.3779/j.issn.1009-3419.2015.08.04
[10] Villa C, Cagle PT, Johnson M, et al.  Correlation of EGFR mutation status with predominant histologic subtype of adenocarcinoma according to the new lung adenocarcinoma classification of the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society[J]. Arch Pathol Lab Med, 2014, 138(10): 1353-1357.   doi: 10.5858/arpa.2013-0376-OA
[11] Ko KH, Hsu HH, Huang TW, et al.  Value of 18F-FDG uptake on PET/CT and CEA level to predict epidermal growth factor receptor mutations in pulmonary adenocarcinoma[J]. Eur J Nucl Med Mol Imaging, 2014, 41(10): 1889-1897.   doi: 10.1007/s00259-014-2802-y
[12] Kanmaz ZD, Aras G, Tuncay E, et al.  Contribution of 18Fluorodeoxyglucose positron emission tomography uptake and TTF-1 expression in the evaluation of the EGFR mutation in patients with lung adenocarcinoma[J]. Cancer Biomark, 2016, 16(3): 489-498.   doi: 10.3233/CBM-160588
[13] Huang CT, Yen RF, Cheng MF, et al.  Correlation of F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value and EGFR mutations in advanced lung adenocarcinoma[J]. Med Oncol, 2010, 27(1): 9-15.   doi: 10.1007/s12032-008-9160-1
[14] Lv ZL, Fan JS, Xu JJ, et al.  Value of 18F-FDG PET/CT for predicting EGFR mutations and positive ALK expression in patients with non-small cell lung cancer: a retrospective analysis of 849 Chinese patients[J]. Eur J Nucl Med Mol Imaging, 2018, 45(5): 735-750.   doi: 10.1007/s00259-017-3885-z
[15] Guan J, Xiao NJ, Chen M, et al.  18F-FDG uptake for prediction EGFR mutation status in non-small cell lung cancer[J]. Medicine (Baltimore), 2016, 95(30): e4421-.   doi: 10.1097/MD.0000000000004421
[16] Na II, Byun BH, Kim KM, et al.  18F-FDG uptake and EGFR mutations in patients with non-small cell lung cancer: a single-institution retrospective analysis[J]. Lung Cancer, 2010, 67(1): 76-80.   doi: 10.1016/j.lungcan.2009.03.010
[17]

Minamimoto R, Jamali M, Gevaert O, et al. Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics[J/OL]. Oncotarget, 2017, 8(32): 52792−52801[2019-06-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581070/pdf/oncotarget-08-52792.pdf. DOI: 10.18632/oncotarget.17782.

[18] Lee SM, Bae SK, Jung SJ, et al.  FDG uptake in non-small cell lung cancer is not an independent predictor of EGFR or KRAS mutation status: a retrospective analysis of 206 patients[J]. Clin Nucl Med, 2015, 40(12): 950-958.   doi: 10.1097/RLU.0000000000000975
[19] Putora PM, Früh M, Müller J.  FDG-PET SUV-max values do not correlate with epidermal growth factor receptor mutation status in lung adenocarcinoma[J]. Respirology, 2013, 18(4): 734-735.   doi: 10.1111/resp.12083
[20] Liu A, Han A, Zhu H, et al.  The role of metabolic tumor volume (MTV) measured by [18F]FDG PET/CT in predicting EGFR gene mutation status in non-small cell lung cancer[J]. Oncotarget, 2017, 8(20): 33736-33744.   doi: 10.18632/oncotarget.16806
[21] 丁重阳, 杨文平, 郭喆, 等.  18F-FDG PET-CT显像预测肺腺癌人表皮生长因子受体突变的价值[J]. 中华肿瘤杂志, 2017, 7(39): 528-531.   doi: 10.3760/cma.j.issn.0253-3766.2017.07.010
Ding CY, Yang WP, Guo Z, et al.  Evaluate the value of 18F-FDG PET-CT imaging in predicting the mutationsin epidermal growth factor receptor in lung adenocarcinoma[J]. Chin J Oncol, 2017, 7(39): 528-531.   doi: 10.3760/cma.j.issn.0253-3766.2017.07.010
[22] Reungwetwattana T, Weroha SJ, Molina JR.  Oncogenic pathways, molecularly targeted therapies, and highlighted clinical trials in non-small-cell lung cancer (NSCLC)[J]. Clin Lung Cancer, 2012, 13(4): 252-266.   doi: 10.1016/j.cllc.2011.09.004
[23] Steuer CE, Ramalingam SS.  ALK-positive non-small cell lung cancer: mechanisms of resistance and emerging treatment options[J]. Cancer, 2014, 120(16): 2392-2402.   doi: 10.1002/cncr.28597
[24] Ying J, Guo L, Qiu T, et al.  Diagnostic value of a novel fully automated immunochemistry assay for detection of ALK rearrangement in primary lung adenocarcinoma[J]. Ann Oncol, 2013, 24(10): 2589-2593.   doi: 10.1093/annonc/mdt295
[25] Putora PM, Szentesi K, Glatzer M, et al.  SUVmax and tumour location in PET-CT predict oncogene status in lung cancer[J]. Oncol Res Treat, 2016, 39(11): 681-686.   doi: 10.1159/000450622
[26] Choi HY, Paeng JC, Kim DW, et al.  Metabolic and metastatic characteristics of ALK-rearranged lung adenocarcinoma on FDG PET/CT[J]. Lung Cancer, 2013, 79(3): 242-247.   doi: 10.1016/j.lungcan.2012.11.021
[27] Jeong CJ, Lee HY, Han J, et al.  Role of imaging biomarkers in predicting anaplastic lymphoma kinase-positive lung adenocarcinoma[J]. Clin Nucl Med, 2015, 40(1): e34-e39.   doi: 10.1097/RLU.0000000000000581
[28] Riely GJ, Kris MG, Rosenbaum D, et al.  Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma[J]. Clin Cancer Res, 2008, 14(18): 5731-5734.   doi: 10.1158/1078-0432.CCR-08-0646
[29] Karachaliou N, Mayo C, Costa C, et al.  KRAS mutations in lung cancer[J]. Clin Lung Cancer, 2013, 14(3): 205-214.   doi: 10.1016/j.cllc.2012.09.007
[30] Caicedo C, Garcia-Velloso MJ, Lozano MD, et al.  Role of [18F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2014, 41(11): 2058-2065.   doi: 10.1007/s00259-014-2833-4
[31] Pan YJ, Zhang Y, Li Y, et al.  ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features[J]. Lung Cancer, 2014, 84(2): 121-126.   doi: 10.1016/j.lungcan
[32] Chin LP, Soo RA, Soong R, et al.  Targeting ROS1 with anaplastic lymphoma kinase inhibitors: a promising therapeutic strategy for a newly defined molecular subset of non-small-cell lung cancer[J]. J Thorac Oncol, 2012, 7(11): 1625-1630.   doi: 10.1097/JTO.0b013e31826baf83
[33] Ou S-HI, Tan J, Yen Y, et al.  ROS1 as a 'druggable' receptor tyrosine kinase: lessons learned from inhibiting the ALK pathway[J]. Expert Rev Anticancer Ther, 2012, 12(4): 447-456.   doi: 10.1586/era.12.17
[34] Bergethon K, Shaw AT, Ou S-HI, et al.  ROS1 rearrangements define a unique molecular class of lung cancers[J]. J Clin Oncol, 2012, 30(8): 863-870.   doi: 10.1200/JCO.2011.35.6345
[35] Borrello MG, Ardini E, Locati LD, et al.  RET inhibition: implications in cancer therapy[J]. Expert Opin Ther Targets, 2013, 17(4): 403-419.   doi: 10.1517/14728222.2013.758715
[36] Wang R, Hu HC, Pan YJ, et al.  RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer[J]. J Clin Oncol, 2012, 30(35): 4352-4359.   doi: 10.1200/JCO.2012.44.1477
[37] Yoon HJ, Sohn I, Cho JH, et al.  Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015, 94(41): e1753-.   doi: 10.1097/MD.0000000000001753