[1] Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation[J]. Science, 2006, 312(5776): 1027-1030.  doi: 10.1126/science.1125559
[2] Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles[J]. Cancer Res, 2003, 63(9): 1999-2004.
[3] Wu D, Zhang XD, Liu PX, et al. Gold Nanostructure: fabrication, surface modification, targeting imaging, and enhanced radiotherapy[J]. Curr Nanoscience, 2011, 7(1): 110-118.
[4] Chithrani DB, Jelveh S, Jalali F, et al. Gold nanoparticles as radiation sensitizers in cancer therapy[J]. Radiat Res, 2010, 173(6): 719-728.  doi: 10.1667/RR1984.1
[5] Hainfeld JF, Dilmanian FA, Zhong Z, et al. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma[J]. Phy Medi Biol, 2010, 55(11): 3045-3059.  doi: 10.1088/0031-9155/55/11/004
[6] Jain S, Hirst DG, O′sullivan JM. Gold nanoparticles as novel agents for cancer therapy[J]. Br J Radiol, 2012, 85(1010): 101-113.  doi: 10.1259/bjr/59448833
[7]

Butterworth K, Coulter J, Jain S, et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy[J/OL]. Nanotechnology, 2010, 21(29): 295101[2013-12-24]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016629/.

[8] Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies[J]. Int J Radiat Oncol Biol Phy, 2011, 79(2): 531-539.  doi: 10.1016/j.ijrobp.2010.08.044
[9] Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes[J]. Nano Lett, 2007, 7(6): 1542-1550.  doi: 10.1021/nl070363y
[10] Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Lett, 2006, 6(4): 662-668.
[11] Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold[J]. Discuss Faraday Soc, 1951, 11: 55-75.  doi: 10.1039/df9511100055
[12] Brandenberger C, Mühlfeld C, Ali Z, et al. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles[J]. Small, 2010, 6(15): 1669-1678.  doi: 10.1002/smll.201000528
[13] Zhang G, Yang Z, Lu W, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice[J]. Biomaterials, 2009, 30(10): 1928-1936.  doi: 10.1016/j.biomaterials.2008.12.038
[14] Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions[J]. Small, 2010, 6(1): 12-21.  doi: 10.1002/smll.200901158
[15] Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles[J]. Small, 2008, 4(1): 26-49.  doi: 10.1002/smll.200700595
[16] 张晓东, 宋莎莎, 陈婕, 等. 15 nm聚乙二醇保护的Au纳米颗粒对HepG23细胞的放射增敏作用[J].国际放射医学核医学杂志, 2014, 38(1): 5-9.
[17] 陈婕, 张晓东, 吴迪, 等.疏基-聚乙二醇修饰的不同尺寸金纳米颗粒的制备和光学特性[J].国际放射医学核医学杂志, 2013, 37(1): 16-19.  doi: 10.3760/cma.j.issn.1673-4114.2013.01.005
[18] Zhang XD, Wu D, Shen X, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy[J]. Biomaterials, 2012, 33(27): 6408-6419.  doi: 10.1016/j.biomaterials.2012.05.047
[19] Giljohann DA, Seferos DS, Patel PC, et al. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles[J]. Nano Lett, 2007, 7(12): 3818-3821.  doi: 10.1021/nl072471q
[20] Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles[J]. ACS Nano, 2008, 2(8): 1639-1644.  doi: 10.1021/nn800330a