[1] Bi WL, Hosny A, Schabath MB, et al.  Artificial intelligence in cancer imaging: Clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.   doi: 10.3322/caac.21552
[2] Samuel AL.  Some studies in machine learning using the game of checkers[J]. IBM J Res Dev, 2000, 44(1/2): 206-226.   doi: 10.1147/rd.441.0206
[3] Lee JG, Jun S, Cho YW, et al.  Deep Learning in Medical Imaging: General Overview[J]. Korean J Radiol, 2017, 18(4): 570-584.   doi: 10.3348/kjr.2017.18.4.570
[4] King BF Jr.  Guest Editorial: Discovery and Artificial Intelligence[J]. AJR Am J Roentgenol, 2017, 209(6): 1189-1190.   doi: 10.2214/AJR.17.19178
[5] Erickson BJ, Korfiatis P, Akkus Z, et al.  Machine Learning for Medical Imaging[J]. Radiographics, 2017, 37(2): 505-515.   doi: 10.1148/rg.2017160130
[6] Chen LY, Shen CY, Zhou ZG, et al.  Automatic PET cervical tumor segmentation by combining deep learning and anatomic prior[J]. Phys Med Biol, 2019, 64(8): 085019-.   doi: 10.1088/1361-6560/ab0b64
[7] Hekler A, Utikal JS, Enk AH, et al.  Pathologist-level classification of histopathological melanoma images with deep neural networks[J]. Eur J Cancer, 2019, 115: 79-83.   doi: 10.1016/j.ejca.2019.04.021
[8] Prasanna P, Karnawat A, Ismail M, et al.  Radiomics-based convolutional neural network for brain tumor segmentation on multiparametric magnetic resonance imaging[J]. J Med Imaging (Bellingham), 2019, 6(2): 024005-.   doi: 10.1117/1.jmi.6.2.024005
[9] Shi LM, Zhang Y, Nie K, et al.  Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI[J]. Magn Reson Imaging, 2019, 61: 33-40.   doi: 10.1016/j.mri.2019.05.003
[10]

Zheng LF, Yu KY, Cai SS, et al. Lung cancer diagnosis with quantitative DIC microscopy and a deep convolutional neural network[J/OL]. Biomed Opt Express, 2019, 10(5): 2446−2456[2019-11-18]. https://www.osapublishing.org/boe/abstract.cfm?uri=boe-10-5-2446. DOI: 10.1364/boe.10.002446.

[11] Havaei M, Davy A, Warde-Farley D, et al.  Brain tumor segmentation with Deep Neural Networks[J]. Med Image Anal, 2017, 35: 18-31.   doi: 10.1016/j.media.2016.05.004
[12] Shelhamer E, Long J, Darrell T.  Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651.   doi: 10.1109/tpami.2016.2572683
[13] Rodner E, Bocklitz T, von Eggeling F, et al.  Fully convolutional networks in multimodal nonlinear microscopy images for automated detection of head and neck carcinoma: Pilot study[J]. Head Neck, 2019, 41(1): 116-121.   doi: 10.1002/hed.25489
[14]

Tahmasebi N, Boulanger P, Noga M, et al. A Fully Convolutional Deep Neural Network for Lung Tumor Boundary Tracking in MRI[C]//Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Honolulu: IEEE, 2018: 5906−5909. DOI: 10.1109/embc.2018.8513607.

[15] Jian JM, Xiong F, Xia W, et al.  Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images[J]. Australas Phys Eng Sci Med, 2018, 41(2): 393-401.   doi: 10.1007/s13246-018-0636-9
[16]

Meng Z, Fan ZY, Zhao ZC, et al. ENS-Unet: End-to-End Noise Suppression U-Net for Brain Tumor Segmentation[C]// Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Honolulu: IEEE, 2018: 5886−5889. DOI: 10.1109/embc.2018.8513676.

[17] Wang HB, Cruz-Roa A, Basavanhally A, et al.  Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features[J]. J Med Imaging (Bellingham), 2014, 1(3): 034003-.   doi: 10.1117/1.jmi.1.3.034003
[18]

Ciresan DC, Giusti A, Gambardella LM, et al. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks[C]//Proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention. Nagoya: Springer, 2013: 411−418. DOI: 10.1007/978−3−642−40763−5_51.

[19]

Xu Y, Mo T, Feng QW, et al. Deep Learning of Feature Representation with Multiple Instance Learning for Medical Image Analysis[C]//Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence: IEEE, 2014: 1626−1630. DOI: 10.1109/ICASSP.2014.6853873.

[20]

Zhang PP, Feng ZY, Cai W, et al. T2-Weighted Image-Based Radiomics Signature for Discriminating Between Seminomas and Nonseminoma[J/OL]. Front Oncol, 2019, 9: 1330[2019-11-18]. https://www.frontiersin.org/articles/10.3389/fonc.2019.01330/full. DOI: 10.3389/fonc.2019.01330.

[21]

Chen CY, Guo XY, Wang J, et al. The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study[J/OL]. Front Oncol, 2019, 9: 1338[2019-11-18]. https://www.frontiersin.org/articles/10.3389/fonc.2019.01338/full. DOI: 10.3389/fonc.2019.01338.

[22]

Pan YH, Huang WM, Lin ZP, et al. Brain tumor grading based on Neural Networks and Convolutional Neural Networks[C]// Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan: IEEE, 2015: 699−702. DOI: 10.1109/embc.2015.7318458.

[23] Tian Q, Yan LF, Zhang X, et al.  Radiomics strategy for glioma grading using texture features from multiparametric MRI[J]. J Magn Reson Imaging, 2018, 48(6): 1518-1528.   doi: 10.1002/jmri.26010
[24]

Kutlu H, Avci E. A Novel Method for Classifying Liver and Brain Tumors Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks [J/OL]. Sensors (Basel), 2019, 19(9): 1992[2019-11-18]. https://www.mdpi.com/1424-8220/19/9/1992. DOI: 10.3390/s19091992.

[25] Huang YQ, Liang CH, He L, et al.  Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer[J]. J Clin Oncol, 2016, 34(18): 2157-2164.   doi: 10.1200/JCO.2015.65.9128
[26] Nie K, Shi LM, Chen Q, et al.  Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI[J]. Clin Cancer Res, 2016, 22(21): 5256-5264.   doi: 10.1158/1078-0432.CCR-15-2997
[27] Song JD, Shi JY, Dong D, et al.  A New Approach to Predict Progression-free Survival in Stage IV EGFR-mutant NSCLC Patients with EGFR-TKI Therapy[J]. Clin Cancer Res, 2018, 24(15): 3583-3592.   doi: 10.1158/1078-0432.CCR-17-2507
[28]

Xu H, Lv W, Feng H, et al. Subregional Radiomics Analysis of PET/CT Imaging with Intratumor Partitioning: Application to Prognosis for Nasopharyngeal Carcinoma[J/OL]. Mol Imaging Biol, 2019[2019-11-18]. https://link.springer.com/content/pdf/10.1007%2Fs11307-019-01439-x.pdf. DOI: 10.1007/s11307−019−01439−x.