[1] 金征宇.  人工智能医学影像应用: 现实与挑战[J]. 放射学实践, 2018, 33(10): 989-991.   doi: 10.13609/j.cnki.1000-0313.2018.10.001
Jin ZY.  AI medical imaging applications: reality and challenges[J]. Radiol Pract, 2018, 33(10): 989-991.   doi: 10.13609/j.cnki.1000-0313.2018.10.001
[2] 梁长虹, 刘再毅.  人工智能与医学影像再思考[J]. 中华医学信息导报, 2017, 32(22): 21-.   doi: 10.3969/j.issn.1000-8039.2017.22.023
Liang CH, Liu ZY.  Rethinking artificial intelligence and medical imaging[J]. China Med News, 2017, 32(22): 21-.   doi: 10.3969/j.issn.1000-8039.2017.22.023
[3] 沈旭东.  基于深度学习的时间序列算法综述[J]. 信息技术与信息化, 2019, 226(1): 71-76.   doi: 10.3969/j.issn.1672-9528.2019.01.021
Shen XD.  Survey of time series algorithms based on deep learning[J]. Infor Technol Informatization, 2019, 226(1): 71-76.   doi: 10.3969/j.issn.1672-9528.2019.01.021
[4]

陈真诚, 倪利莉, 王红艳, 等. 人工智能技术在医学影像专家系统中的应用及发展[J]. 国外医学·生物医学工程分册, 2001, 24(5): 201−206. DOI: 10.3760/cma.j.issn.1673−4181.2001.05.003.

Chen ZC, Ni LL, Wang HY, et al. Application and development of artificial intelligence technology in medical imaging expert system[J]. Foreign Med Sci (Biomed Eng Fasc), 2001, 24(5): 201−206. DOI: 10.3760/cma.j.issn.1673−4181.2001.05.003.

[5] 高歌, 马帅, 王霄英.  计算机辅助诊断在医学影像诊断中的基本原理和应用进展[J]. 放射学实践, 2016, 31(12): 1127-1129.   doi: 10.13609/j.cnki.1000-0313.2016.12.004
Gao G, Ma S, Wang XY.  Basic principles and application progress of computer-aided diagnosis in medical imaging diagnosis[J]. Radiol Pract, 2016, 31(12): 1127-1129.   doi: 10.13609/j.cnki.1000-0313.2016.12.004
[6]

国务院. 国务院关于印发新一代人工智能发展规划的通知(国发(2017)35号)[EB/OL]. [2019-11-12]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

State Council. Notice of the State Council on Printing and Distributing the New Generation Artificial Intelligence Development Plan (Guofa (2017) No. 35)[EB/OL]. [2019-11-12]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

[7] Yang W, Chen YY, Liu YB, et al.  Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain[J]. Med Image Anal, 2017, 35(1): 421-433.   doi: 10.1016/j.media.2016.08.004
[8]

Heo SJ, Kim Y, Yun S, et al. Deep learning algorithms with demographic information help to detect tuberculosis in chest radiographs in annual workers' health examination data[J/OL]. Int J Environ Res Public Health, 2019, 16(2): e250[2019-11-12]. https://www.mdpi.com/1660-4601/16/2/250. DOI: 10.3390/ijerph16020250.

[9]

Pasa F, Golkov V, Pfeiffer F, et al. Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization[J/OL]. Sci Rep, 2019, 9(1): 6268[2019-11-12]. https://www.nature.com/articles/s41598-019-42557-4. DOI: 10.1038/s41598−019−42557−4.

[10] Lure FYM, Jaeger S, Antani S, 等.  自动化显微镜检测和数字化胸片诊断系统在肺结核筛查中的应用[J]. 新发传染病电子杂志, 2017, 2(1): 5-9.
Lure FYM, Jaeger S, Antani S, et al.  Application of automated microscope detection and digital chest radiography diagnostic system in tuberculosis screening[J]. Electr J Emerg Infec Dis, 2017, 2(1): 5-9.
[11] Kim DH, MacKinnon T.  Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks[J]. Clin Radiol, 2018, 73(5): 439-445.   doi: 10.1016/j.crad.2017.11.015
[12] Cheng CT, Ho TY, Lee TY, et al.  Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs[J]. Eur Radiol, 2019, 29(10): 5469-5477.   doi: 10.1007/s00330-019-06167-y
[13] 郑家伟, 李金忠, 钟来平, 等.  口腔鳞状细胞癌临床流行病学研究现状[J]. 中国口腔颌面外科杂志, 2007, 5(2): 83-90.   doi: 10.3969/j.issn.1672-3244.2007.02.002
Zheng JW, Li JZ, Zhong LP, et al.  Clinical epidemiology and risk factors of oral squamous cell carcinoma: An overview[J]. China J Oral Maxillofac Surg, 2007, 5(2): 83-90.   doi: 10.3969/j.issn.1672-3244.2007.02.002
[14] Forghani R, Chatterjee A, Reinhold C, et al.  Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning[J]. Eur Radiol, 2019, 29(11): 6172-6181.   doi: 10.1007/s00330-019-06159-y
[15] Bur AM, Holcomb A, Goodwin S, et al.  Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma[J]. Oral Oncol, 2019, 92(5): 20-25.   doi: 10.1016/j.oraloncology.2019.03.011
[16]

Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning[J/OL]. Sci Rep, 2017, 7: 46479[2019-11-12]. https://www.nature.com/articles/srep46479. DOI: 10.1038/srep46479.

[17] Muehlematter UJ, Mannil M, Becker AS, et al.  Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning[J]. Eur Radiol, 2019, 29(5): 2207-2217.   doi: 10.1007/s00330-018-5846-8
[18] Tomita N, Cheung YY, Hassanpour S.  Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans[J]. Comput Biol Med, 2018, 98(7): 8-15.   doi: 10.1016/j.compbiomed.2018.05.011
[19] Zeng LL, Xie L, Shen H, et al.  Differentiating patients with Parkinson's Disease from normal controls using gray matter in the cerebellum[J]. Cerebellum, 2017, 16(1): 151-157.   doi: 10.1007/s12311-016-0781-1
[20]

Shinde S, Prasad S, Saboo Y, et al. Predictive markers for Parkinson's disease using deep neural nets on neuromelanin sensitive MRI[J/OL]. Neuroimage Clin, 2019, 22: 101748[2019-11-12]. https://www.sciencedirect.com/science/article/pii/S2213158219300981?via%3Dihub. DOI: 10.1016/j.nicl.2019.101748.

[21]

Li QL, Xu YZ, Chen ZW, et al. Tumor Segmentation in Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network[J/OL]. Biomed Res Int, 2018, 2018: 9128527 [2019-11-12]. http://downloads.hindawi.com/journals/bmri/2018/9128527.pdf. DOI: 10.1155/2018/9128527.

[22] Lin L, Dou Q, Jin YM, et al.  Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma[J]. Radiology, 2019, 291(3): 677-686.   doi: 10.1148/radiol.2019182012
[23]

Trebeschi S, van Griethuysen JJM, Lambregts DMJ, et al. Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR[J/OL]. Sci Rep, 2017, 7: 5301[2019-11-12]. https://www.nature.com/articles/s41598-017-05728-9. DOI: 10.1038/s41598−017−05728−9.

[24] Wang JZ, Lu JY, Qin G, et al.  Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images[J]. Med Phys, 2018, 45(6): 2560-2564.   doi: 10.1002/mp.12918
[25] Ding L, Liu GW, Zhao BC, et al.  Artificial intelligence system of faster region-based convolutional neural network surpassing senior radiologists in evaluation of metastatic lymph nodes of rectal cancer[J]. Chin Med J, 2019, 132(4): 379-387.   doi: 10.1097/CM9.0000000000000095
[26] Al-Antari MA, Al-Masni MA, Park SU, et al.  An Automatic Computer-Aided Diagnosis System for Breast Cancer in Digital Mammograms via Deep Belief Network[J]. J Med Biol Eng, 2018, 38(3): 443-456.   doi: 10.1007/s40846-017-0321-6
[27] Ha R, Mutasa S, Karcich J, et al.  Predicting Breast Cancer Molecular Subtype with MRI Dataset Utilizing Convolutional Neural Network Algorithm[J]. J Digit Imaging, 2019, 32(2): 276-282.   doi: 10.1007/s10278-019-00179-2
[28] Shen WC, Chen SW, Wu KC, et al.  Prediction of local relapse and distant metastasis in patients with definitive chemoradiotherapy-treated cervical cancer by deep learning from [18F]-fluorodeoxyglucose positron emission tomography/ computed tomography[J]. Eur Radiol, 2019, 29(12): 6741-6749.   doi: 10.1007/s00330-019-06265-x
[29] Shibutani T, Nakajima K, Wakabayashi H, et al.  Accuracy of an artificial neural network for detecting a regional abnormality in myocardial perfusion SPECT[J]. Ann Nucl Med, 2019, 33(2): 86-92.   doi: 10.1007/s12149-018-1306-4
[30]

Ma LY, Ma CK, Liu YJ, et al. Thyroid Diagnosis from SPECT Images Using Convolutional Neural Network with Optimization [J/OL]. Comput Intell Neurosci, 2019, 2019: 6212759[2019-11-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350547/. DOI: 10.1155/2019/6212759.