[1]

Maynard RL. Nano-technology and nano-toxicology[J/OL]. Emerg Health Threats J, 2012, 5(1): 17508 [2018-07-31]. https://www.ncbi.nlm.nih.gov/pubmed/22662021. DOI: 10.3402/ehtj.v5i0.17508.

[2] 王树斌, 袁飞, 彭志平, 等.  EGF偶联牛血清白蛋白纳米载体的构建[J]. 重庆医科大学学报, 2008, 33(6): 645-648, 682.   doi: 10.13406/j.cnki.cyxb.2008.06.025
Wang SB, Yuan F, Peng ZP, et al.  Construction of EGF coupling bovine serum albumin nano-carrier[J]. J Chongqing Med Univ, 2008, 33(6): 645-648, 682.   doi: 10.13406/j.cnki.cyxb.2008.06.025
[3] Li W, Ji YH, Li CX, et al.  Evaluation of therapeutic effectiveness of 131I-antiEGFR-BSA-PCL in a mouse model of colorectal cancer[J]. World J Gastroenterol, 2016, 22(14): 3758-3768.   doi: 10.3748/wjg.v22.i14.3758
[4] Li CX, Tan J, Chang J, et al.  Radioiodine-labeled anti-epidermal growth factor receptor binding bovine serum albumin-polycaprolactone for targeting imaging of glioblastoma[J]. Oncol Rep, 2017, 38(5): 2919-2926.   doi: 10.3892/or.2017.5937
[5] Lin M, Huang JX, Zhang DS, et al.  Hepatoma-targeted radionuclide immune albumin nanospheres: 131I-antiAFPMcAb-GCV-BSA-NPs[J]. Anal Cell Pathol (Amst), 2016, 2016: 9142198-.   doi: 10.1155/2016/9142198
[6] 季发权, 戚宁, 张东升, 等.  131I-antiAFP导向载药纳米粒对肝癌移植瘤的抑制作用[J]. 第三军医大学学报, 2018, 40(5): 395-399.   doi: 10.16016/j.1000-5404.201709228
Ji FQ, Qi N, Zhang DS, et al.  Inhibitory effect 131I-antiAFP McAb-DOX-BSA nanoparticles on hepatocellular carcinoma bearing nude mice[J]. J Third Mil Med Univ, 2018, 40(5): 395-399.   doi: 10.16016/j.1000-5404.201709228
[7] Tian LL, Chen Q, Yi X, et al.  Albumin-templated manganese dioxide nanoparticles for enhanced radioisotope therapy[J]. Small, 2017, 13(25): 1700640-.   doi: 10.1002/smll.201700640
[8] Tian LL, Chen Q, Yi X, et al.  Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer[J]. Theranostics, 2017, 7(3): 614-623.   doi: 10.7150/thno.17381
[9] Major M, Prieur E, Tocanne JF, et al.  Characterisation and phase behaviour of phospholipid bilayers adsorbed on spherical polysaccharidic nanoparticles[J]. Biochim Biophys Acta, 1997, 1327(1): 32-40.   doi: 10.1016/S0005-2736(97)00041-2
[10] Wang HY, Sheng WZ.  131I-traced PLGA-lipid nanoparticles as drug delivery carriers for the targeted chemotherapeutic treatment of melanoma[J]. Nanoscale Res Lett, 2017, 12(1): 365-.   doi: 10.1186/s11671-017-2140-7
[11] Lee J, Kim J, Jeong M, et al.  Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration[J]. Nano Lett, 2015, 15(5): 2938-2944.   doi: 10.1021/nl5047494
[12] Gao JM, Fang L, Sun DY, et al.  131I-labeled and DOX-loaded multifunctional nanoliposomes for radiotherapy and chemotherapy in brain gliomas[J]. Brain Res, 2016, : -.   doi: 10.1016/j.brainres.2016.12.014
[13] Li W, Sun DY, Li N, et al.  Therapy of cervical cancer using 131I-labeled nanoparticles[J]. J Int Med Res, 2018, 46(6): 2359-2370.   doi: 10.1177/0300060518761787
[14] Chou CH, Chen CD, Wang CRC.  Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors[J]. J Phys Chem B, 2005, 109(22): 11135-11138.   doi: 10.1021/jp0444520
[15] Su N, Dang YJ, Liang GL, et al.  Iodine-125-labeled cRGD-gold nanoparticles as tumor-targeted radiosensitizer and imaging agent[J]. Nanoscale Res Lett, 2015, 10: 160-.   doi: 10.1186/s11671-015-0864-9
[16] Zhong JP, Wen LW, Yang SH, et al.  Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods[J]. Nanomedicine, 2015, 11(6): 1499-1509.   doi: 10.1016/j.nano.2015.04.002
[17] Joshi PP, Yoon SJ, Hardin WG, et al.  Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging[J]. Bioconjug Chem, 2013, 24(6): 878-888.   doi: 10.1021/bc3004815
[18] Vigderman L, Khanal BP, Zubarev ER.  Functional gold nanorods: synthesis, self-assembly, and sensing applications[J]. Adv Mater, 2012, 24(36): 4811-4841.   doi: 10.1002/adma.201201690
[19] Haubner R, Bruchertseifer F, Bock M, et al.  Synthesis and biological evaluation of a 99mTc-labelled cyclic RGD peptide for imaging the αvβ3 expression[J]. Nuklearmedizin, 2004, 43(1): 26-32.   doi: 10.1055/s-0038-1623911
[20] Eskandari N, Yavari K, Outokesh M, et al.  Iodine-131 radiolabeling of poly ethylene glycol-coated gold nanorods for in vivo imaging[J]. J Labelled Comp Radiopharm, 2013, 56(1): 12-16.   doi: 10.1002/jlcr.3006
[21] Zhang YY, Zhang YX, Yin LL, et al.  Synthesis and bioevaluation of iodine-131 directly labeled cyclic RGD-pegylated gold nanorods for tumor-targeted imaging[J]. Contrast Media Mol Imaging, 2017, 2017: 6081724-.   doi: 10.1155/2017/6081724
[22] 陈建芳, 张海良, 王霞瑜.  树枝状偶氮液晶高分子(PAMAM-MMAZO)的合成及表征[J]. 应用化学, 2006, 23(8): 835-839.   doi: 10.3969/j.issn.1000-0518.2006.08.004
Chen JF, Zhang HL, Wang XY.  Synthesis and characterization of dendritic azobenzene side-chain liquid crystalline copolymer (PAMAM-MMAZO)[J]. Chin J Appl Chem, 2006, 23(8): 835-839.   doi: 10.3969/j.issn.1000-0518.2006.08.004
[23] Liu Y, Bryantsev VS, Diallo MS, et al.  PAMAM dendrimers undergo pH responsive conformational changes without swelling[J]. J Am Chem Soc, 2009, 131(8): 2798-2799.   doi: 10.1021/ja8100227
[24] Gomez MV, Guerra J, Velders AH, et al.  NMR characterization of fourth-generation PAMAM dendrimers in the presence and absence of palladium dendrimer-encapsulated nanoparticles[J]. J Am Chem Soc, 2009, 131(1): 341-350.   doi: 10.1021/ja807488d
[25] Malik N, Wiwattanapatapee R, Klopsch R, et al.  Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo[J]. J Control Release, 2000, 65(1/2): 133-148.   doi: 10.1016/S0168-3659(99)00246-1
[26] 乔文礼, 赵晋华, 邵晓霞, 等.  131I-BmK CT的制备及其在胶质瘤荷瘤大鼠体内分布与显像研究[J]. 核技术, 2011, 34(3): 213-216.
Qiao WL, Zhao JH, Shao XX, et al.  Preparation of 131I-BmK CT and bio-distribution and imaging in glioma-bearing rats[J]. Nucl Tech, 2011, 34(3): 213-216.
[27] Cheng YJ, Zhu JY, Zhao LZ, et al.  131I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas[J]. Nanomedicine (Lond), 2016, 11(10): 1253-1266.   doi: 10.2217/nnm-2016-0001
[28] Gupta AK, Gupta M.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005, 26(18): 3995-4021.   doi: 10.1016/j.biomaterials.2004.10.012
[29] Shevtsov M, Multhoff G.  Recent developments of magnetic nanoparticles for theranostics of brain tumor[J]. Curr Drug Metab, 2016, 17(8): 737-744.   doi: 10.2174/1389200217666160607232540
[30]

Gobbo OL, Sjaastad K, Radomski MW, et al. Magnetic nanoparticles in cancer theranostics[J/OL]. Theranostics, 2015, 5(11): 1249-1263 [2018-07-31]. http://www.thno.org/v05p1249.htm. DOI: 10.7150/thno.11544.

[31]

Chen J, Zhu S, Tong LQ, et al. Superparamagnetic iron oxide nanoparticles mediated 131I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice[J/OL]. BMC Cancer, 2014, 14: 114 [2018-07-31]. https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-14-114. DOI: 10.1186/1471-2407-14-114.

[32] Yang K, Zhang S, Zhang GX, et al.  Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Lett, 2010, 10(9): 3318-3323.   doi: 10.1021/nl100996u
[33] Chen L, Zhong XY, Yi X, et al.  Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer[J]. Biomaterials, 2015, 66: 21-28.   doi: 10.1016/j.biomaterials.2015.06.043
[34] Song XJ, Liang C, Feng LZ, et al.  Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy[J]. Biomater Sci, 2017, 5(9): 1828-1835.   doi: 10.1039/c7bm00409e