[1] Semelka RC, Corrigan K, Ascher SM, et al. Renal corticomedullary differentiation:observation in patients with differing serum creatinine levels. Radiology, 1994, 190(1):149-152.
[2] van den Dool SW, Wasser MN, de Fijter JW, et al. Functional renal volume:quantitative analysis at gadolinium-enhanced MR angiography-feasibility study in healthy potential kidney donors. Radiology, 2005, 236(1):189-195.
[3] Hauger O, Delalande C, Deminiere C, et al. Nephrotoxic nephritis and obstructive nephropathy:evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology, 2000, 217(3):819-826.
[4] Grenier N, Pedersen M, Hauger O. Contrast agents for functional and cellular MRI of the kidney. Eur J Radiol, 2006, 60(3):341-352.
[5] Li LP, Storey P, Pierchala L,et al. Evaluation of the reproducibility of intrarenal R2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging, 2004, 19(5):610-616.
[6] Afford SK, Sadowski EA, Unal O, et al. Delection of acute renal ischemia in swine using blood oxygen level-dependent magnetic resonance imaging. J Magn Reson Imaging, 2005, 22(3):347-353.
[7] Thoeny HC, Zumstein D, Simon-Zoula S. Functional evaluation of transplanled kidneys wilh diffusion-weighted and BOLD MR imaging:initial experience. Radiology, 2006, 241(3):812-821.
[8] Li L, Storey P, Kim D, et al. Kidneys in hypertensive rats show reduced response to nitric oxide synthase inhibition as evaluated by BOLD MRI. J Magn Reson Imaging, 2003, 17(6):671-675.
[9] Santosh T, Anthony V, Li Lp, et al. Evaluation of intrarenal oxygenation at 3.0 T using 3-dimensional multiple gradient-recalled echo sequence. Investigative Radiology, 2006, 41(2):181-184.
[10] Pedersen M, Wen JG, Shi Y, et al. The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI. APMIS Suppl, 2003, (109):29-34.
[11] Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging, 2003,17:104-113.
[12] Martirosian P, Klose U, Mader I, et al. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med, 2004, 51(2):353-361.
[13] Fenchel M, Martirosian P, Langanke J, et al. Perfusion MR imaging with FAIR True FISP spin labeling in patients with and wilhout renal artely stenosis. Radiology, 2006, 238(3):1013-1021.
[14] Rusinek H, Lee VS. Johnson G. Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med, 2001,46(2):312-316.
[15] Gandy SJ, Sudarshan TA, Sheppard DG, et al. Dynamic MRI contrast enhancement of renal cortex:a filnctional assessment of renovascular disease in palients with renal artery stenosis. J Magn Reson Imaging, 2003, 18(4):461-466.
[16] Miehaely HJ, Schoenberg SO, Oesingmann N, et al. Renal artery stenusis:functional assessment with dynamic MR perfusion measurements-feasibility study. Radiology, 2006, 238(2):586-596.
[17] Vallee JP, Lazeyras F, Khan HG, et al. Absolute renal blood flow quanlification by dynamic MRI and Gd-DTPA. Eur Radiol, 2000, 10(8):1245-1252.
[18] Aumann S, Schoenberg SO, Just A, et al. Quantification of renal perfusion using an intravaseular contrast agent (part 1):results in a canine model. Magn Reson Med, 2003, 49(2):276-287.
[19] Lenhard SC, Nerurkar SS, Schaeffer TR, et al. p38 MAPK inhibitors ameliorate target organ damage in hypertension:Part 2. Improved renal function as assessed by dynamic contrast-enhanced magnetic resonance imaging. J Pharmacol Exp Ther, 2003, 307(3):939-946.
[20] Niendorf ER, Grist TM, Lee FT Jr, et al. Rapid in vivo measurement of single-kidney extraction fraction and glomerular filtration rate with MR imaging. Radiology, 1998, 206(3):791-798.
[21] Lee VS, Rusinek H, Noz ME, et al. Dynamic three-dimensional MR renography for the measurement of single kidney function:initial experience. Radiology, 2003, 227(1):289-294.