[1] Fornetti J, Welm AL, Stewart SA.  Understanding the bone in cancer metastasis[J]. J Bone Miner Res, 2018, 33(12): 2099-2113.   doi: 10.1002/jbmr.3618
[2] Wu SY, Pan Y, Mao YY, et al.  Current progress and mechanisms of bone metastasis in lung cancer: a narrative review[J]. Transl Lung Cancer Res, 2021, 10(1): 439-451.   doi: 10.21037/tlcr-20-835
[3]

Hong S, Youk T, Lee SJ, et al. Bone metastasis and skeletal-related events in patients with solid cancer: a Korean nationwide health insurance database study[J/OL]. PLoS One, 2020, 15(7): e0234927[2021-06-28]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234927. DOI: 10.1371/journal.pone.0234927.

[4] D'angelo G, Sciuto R, Salvatori M, et al.  Targeted "bone-seeking" radiopharmaceuticals for palliative treatment of bone metastases: a systematic review and meta-analysis[J]. Q J Nucl Med Mol Imaging, 2012, 56(6): 538-543.
[5] Handkiewicz-Junak D, Poeppel TD, Bodei L, et al.  EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides[J]. Eur J Nucl Med Mol Imaging, 2018, 45(5): 846-859.   doi: 10.1007/s00259-018-3947-x
[6]

Wong MH, Pavlakis N. Optimal management of bone metastases in breast cancer patients[J/OL]. Breast Cancer (Dove Med Press), 2011, 3: 35−60[2021-06-28]. https://doi.org/10.2147/BCTT.S6655. DOI: 10.2147/BCTT.S6655.

[7] Ye XJ, Sun D, Lou C.  Comparison of the efficacy of strontium-89 chloride in treating bone metastasis of lung, breast, and prostate cancers[J]. J Cancer Res Ther, 2018, 14(S1): S36-40.   doi: 10.4103/0973-1482.181172
[8] Sgouros G, Roeske JC, McDevitt MR, et al.  MIRD pamphlet No. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy[J]. J Nucl Med, 2010, 51(2): 311-328.   doi: 10.2967/jnumed.108.058651
[9] Sgouros G, Hobbs R, Josefsson A.  Dosimetry and radiobiology of alpha-particle emitting radionuclides[J]. Curr Radiopharm, 2018, 11(3): 209-214.   doi: 10.2174/1874471011666180426130058
[10]

Tafreshi NK, Doligalski ML, Tichacek CJ, et al. Development of targeted alpha particle therapy for solid tumors[J/OL]. Molecules, 2019, 24(23): 4314[2021-06-28]. https://www.mdpi.com/1420-3049/24/23/4314. DOI: 10.3390/molecules24234314.

[11] Jadvar H, Quinn DI.  Targeted α-particle therapy of bone metastases in prostate cancer[J]. Clin Nucl Med, 2013, 38(12): 966-971.   doi: 10.1097/RLU.0000000000000290
[12] Yard BD, Gopal P, Bannik K, et al.  Cellular and genetic determinants of the sensitivity of cancer to α-particle irradiation[J]. Cancer Res, 2019, 79(21): 5640-5651.   doi: 10.1158/0008-5472.CAN-19-0859
[13] Thomlinson RH, Gray LH.  The histological structure of some human lung cancers and the possible implications for radiotherapy[J]. Br J Cancer, 1955, 9(4): 539-549.   doi: 10.1038/bjc.1955.55
[14] Parker C, Nilsson S, Heinrich D, et al.  Alpha emitter radium-223 and survival in metastatic prostate cancer[J]. N Engl J Med, 2013, 369(3): 213-223.   doi: 10.1056/NEJMoa1213755
[15]

Bruland ØS, Nilsson S, Fisher DR, et al. High-linear energy transfer irradiation targeted to skeletal metastases by the α-emitter 223Ra: adjuvant or alternative to conventional modalities?[J]. Clin Cancer Res, 2006, 12(20 Suppl): 6250s-6257s. DOI: 10.1158/1078-0432.CCR-06-0841.

[16] Dizdarevic S, Jessop M, Begley P, et al.  223Ra-dichloride in castration-resistant metastatic prostate cancer: improving outcomes and identifying predictors of survival in clinical practice[J]. Eur J Nucl Med Mol Imaging, 2018, 45(13): 2264-2273.   doi: 10.1007/s00259-018-4083-3
[17] Huang JF, Shen JF, Li X, et al.  Incidence of patients with bone metastases at diagnosis of solid tumors in adults: a large population-based study[J]. Ann Transl Med, 2020, 8(7): 482-.   doi: 10.21037/atm.2020.03.55
[18]

Liu DY, Kuai Y, Zhu RH, et al. Prognosis of prostate cancer and bone metastasis pattern of patients: a SEER-based study and a local hospital based study from China[J/OL]. Sci Rep, 2020, 10(1): 9104[2021-06-28]. https://www.nature.com/articles/s41598-020-64073-6. DOI: 10.1038/s41598-020-64073-6.

[19] Filippi L, Chiaravalloti A, Basile P, et al.  Molecular and metabolic imaging of castration-resistant prostate cancer: state of art and future prospects[J]. Curr Mol Med, 2022, 22(1): 25-36.   doi: 10.2174/1566524021666210211112423
[20] Dizdarevic S, McCready R, Vinjamuri S.  Radium-223 dichloride in prostate cancer: proof of principle for the use of targeted alpha treatment in clinical practice[J]. Eur J Nucl Med Mol Imaging, 2020, 47(1): 192-217.   doi: 10.1007/s00259-019-04475-5
[21] Wissing MD, van Leeuwen FWB, van der Pluijm G, et al.  Radium-223 chloride: Extending life in prostate cancer patients by treating bone metastases[J]. Clin Cancer Res, 2013, 19(21): 5822-5827.   doi: 10.1158/1078-0432.CCR-13-1896
[22] Terrisse S, Karamouza E, Parker CC, et al.  Overall survival in men with bone metastases from castration-resistant prostate cancer treated with bone-targeting radioisotopes: a meta-analysis of individual patient data from randomized clinical trials[J]. JAMA Oncol, 2020, 6(2): 206-216.   doi: 10.1001/jamaoncol.2019.4097
[23] Sraieb M, Hirmas N, Conrad R, et al.  Assessing the quality of life of patients with metastatic castration-resistant prostate cancer with bone metastases receiving [223Ra]RaCl2 therapy[J]. Medicine (Baltimore), 2020, 99(38): e22287-.   doi: 10.1097/MD.0000000000022287
[24] Caffo O, Frantellizzi V, Tucci M, et al.  Fracture risk and survival outcomes in metastatic castration-resistant prostate cancer patients sequentially treated with abiraterone acetate and RADIUM-223[J]. Eur J Nucl Med Mol Imaging, 2020, 47(11): 2633-2638.   doi: 10.1007/s00259-020-04796-w
[25] Hoskin P, Sartor O, O'Sullivan JM, et al.  Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial[J]. Lancet Oncol, 2014, 15(12): 1397-1406.   doi: 10.1016/S1470-2045(14)70474-7
[26] Saad F, Carles J, Gillessen S, et al.  Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, single-arm phase 3b trial[J]. Lancet Oncol, 2016, 17(9): 1306-1316.   doi: 10.1016/S1470-2045(16)30173-5
[27] Usmani S, Sadeq A, Marafi F, et al.  68Ga-PMSA uptake in the lung: metastatic versus primary lung tumor[J]. Clin Nucl Med, 2020, 45(2): e80-e82.   doi: 10.1097/RLU.0000000000002870
[28] Alberts I, Hünermund JN, Sachpekidis C, et al.  The influence of digital PET/CT on diagnostic certainty and interrater reliability in [68Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer[J]. Eur Radiol, 2021, 31(10): 8030-8039.   doi: 10.1007/s00330-021-07870-5
[29] Sathekge M, Bruchertseifer F, Knoesen O, et al.  225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study[J]. Eur J Nucl Med Mol Imaging, 2019, 46(1): 129-138.   doi: 10.1007/s00259-018-4167-0
[30] Sathekge M, Bruchertseifer F, Vorster M, et al.  Predictors of overall and disease-free survival in metastatic castration-resistant prostate cancer patients receiving 225Ac-PSMA-617 radioligand therapy[J]. J Nucl Med, 2020, 61(1): 62-69.   doi: 10.2967/jnumed.119.229229
[31] Azorín-Vega E, Rojas-Calderón E, Ferro-Flores G, et al.  Assessment of the radiation absorbed dose produced by 177Lu-iPSMA, 225Ac-iPSMA and 223RaCl2 to prostate cancer cell nuclei in a bone microenvironment model[J]. Appl Radiat Isot, 2019, 146: 66-71.   doi: 10.1016/j.apradiso.2019.01.020
[32] Parker C, Heidenreich A, Nilsson S, et al.  Current approaches to incorporation of radium-223 in clinical practice[J]. Prostate Cancer Prostatic Dis, 2018, 21(1): 37-47.   doi: 10.1038/s41391-017-0020-y
[33] Morris MJ, Corey E, Guise TA, et al.  Radium-223 mechanism of action: implications for use in treatment combinations[J]. Nat Rev Urol, 2019, 16(12): 745-756.   doi: 10.1038/s41585-019-0251-x