[1] Townsend DW. Positron emission tomography/computed tomography. Semin Nucl Med, 2008, 38(3): 152-166.  doi: 10.1053/j.semnuclmed.2008.01.003
[2] Pichler BJ, Wehrl HF, Kolb A, et al. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging?. Semin Nucl Med, 2008, 38(3): 199-208.  doi: 10.1053/j.semnuclmed.2008.02.001
[3] Seemann MD. Whole-body PET/MRI: the future in oncological imaging. Technol Cancer Res Treat, 2005, 4(5): 577-582.  doi: 10.1177/153303460500400512
[4] Ruf J, Lopez Hänninen E, Böhmig M, et al. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology, 2006, 6(6): 512-519.  doi: 10.1159/000096993
[5] Schlemmer HP, Pichler BJ, Krieg R, et al. An integrated MR/PET system: prospective applications. Abdom Imaging, 2009, 34(6): 668-674.  doi: 10.1007/s00261-008-9450-2
[6] Holdsworth SJ, Bammer R. . Magnetic resonance imaging techniques, fMRI, DWI, and PWI. Semin Neurol, 2008, 28(4): 395-406.  doi: 10.1055/s-0028-1083697
[7] Del Guerra A, Bartoli A, Belcari N, et al. Performance evaluation of the fully engineered YAP-(S) PET scanner for small animal imaging. IEEE Trans Nucl Sci, 2006, 53(3): 1078-1083.  doi: 10.1109/TNS.2006.871900
[8] Douraghy A, Rannou FR, Silverman RW, et al. FPGA electronics for OPET: a dual-modality optical and positron emission tomograph. IEEE Trans Nucl Sci, 2008, 55(5): 2541-2545.  doi: 10.1109/TNS.2008.2002257
[9] Gulsen G, Birgul O, Unlu MB, et al. Combined diffuse optical tomography(DOT) and MRI system for cancer imaging in small animals. Technol Cancer Res Treat, 2006, 5(4): 351-363.  doi: 10.1177/153303460600500407
[10] Del Guerra A, Belcari N. State-of-the-art of PET, SPECT and CT for small animal imaging. Nucl Instrum Methods Phys Res A, 2007, 583(1): 119-124.  doi: 10.1016/j.nima.2007.08.187
[11]

Parnham KB, Chowdhury S, Li J, et al. Second-generation, tri-modality pre-clinical imaging system // IEEE. Nucl Sci Symposium Conference Record. San Diego: IEEE, 2006: 1802-1805.

[12] Peter J, Semmler W. A modular design triple-modality SPECT-CT-ODT small animal imager. Eur J Nucl Med Mol Imaging, 2007, 34(Suppl): S158.
[13] de Jong HW, Beekman FJ, Viergever MA, et al. Simultaneous (99m)Tc/(201)Tl dual-isotope SPET with Monte Carlo-based downscatter correction. Eur J Nucl Med Mol Imaging, 2002, 29(8): 1063-1071.  doi: 10.1007/s00259-002-0834-1
[14] Ouyang J, El Fakhri G, Moore SC. Fast Monte Carlo based joint iterative reconstruction for simultaneous 99mTc/123I SPECT imaging. Med Phys, 2007, 34(8): 3263-3272.  doi: 10.1118/1.2756601
[15] Kadrmas DJ, Rust TC. Feasibility of rapid multi-tracer PET tumor imaging. IEEE Trans Nucl Sci, 2005, 52(5): 1341-1347.  doi: 10.1109/TNS.2005.858230
[16] Rust TC, Kadrmas DJ. Rapid dual-tracer PTSM+ATSM PET imaging of tumour blood flow and hypoxia: a simulation study. Phys Med Biol, 2006, 51(1): 61-75.  doi: 10.1088/0031-9155/51/1/005
[17] Rust TC, DiBella EV, McGann CJ, et al. Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows. Phys Med Biol, 2006, 51(20): 5347-5362.  doi: 10.1088/0031-9155/51/20/018
[18]

Black NF, Kadrmas DJ. Measurement of secondary tracers in FDG tumor imaging by rapid multi-tracer PET // IEEE. Nuclear Science Symposium Conference Record. Honolulu: IEEE, 2007: 2825-2832.

[19] Black NF, McJames S, Rust TC, et al. Evaluation of rapid dual-tracer(62)Cu-PTSM+(62)Cu-ATSM PET in dogs with spontaneously occurring tumors. Phys Med Biol, 2008, 53(1): 217-232.  doi: 10.1088/0031-9155/53/1/015
[20] Verhaeghe J, D'AsselerY, De Winter O, et al. Simultaneous dual tracer NH3/FDG cardiac PET imaging: a simulation study. J Nucl Med, 2005, 46(Suppl 1): S56.
[21]

El Fakhri G, Sitek A, Guérin B. Simultaneous dual tracer PET using generalized factor analysis of dynamic sequences // IEEE. Nuclear Science SymposiumMedical Imaging Conference Record. San Diego: IEEE, 2006: 2128-2130.

[22] Basu S. Selecting the optimal image segmentation strategy in the era of multitracer multimodality imaging: a critical step for image-guided radiation therapy. Eur J Nucl Med Mol Imaging, 2009, 36(2): 180-181.  doi: 10.1007/s00259-008-1033-5
[23] Herzog H, Pietrzyk U, Shah NJ, et al. The current state, challenges and perspectives of MR-PET. Neuroimage, 2010, 49(3): 2072-2082.  doi: 10.1016/j.neuroimage.2009.10.036
[24] Lecomte R. Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging, 2009, 36(Suppl 1): S69-S85.
[25]

Li X, Lockhart C, Lewellen TK, et al. A high resolution, monolithic crystal, PET/MRI detector with DOIpositioning capability // IEEE. 30th Annual International Conference. Vancouver: IEEE, 2008: 2287-2290.

[26] Hofmann M, Pichler B, Schölkopf B, et al. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging, 2009, 36(Suppl 1): S93-S104.
[27]

Kops ER, Herzog H. Alternative methods for attenuation correction for PET images in MR-PET scanners //IEEE. Nuclear Science Sym-posium Conference Record. Honolulu: IEEE, 2007: 4327-4330.

[28] Hofmann M, Steinke F, ScheelV, et al. MRI-based attenuation correction for PET/MRI: a novelapproach combining pattern recognition and atlas registration. J Nucl Med, 2008, 49(11): 1875-1883.  doi: 10.2967/jnumed.107.049353
[29] Brix G, Nekolla EA, Nosske D, et al. Risks and safety aspects related to PET/MR examinations. Eur J Nucl Med Mol Imaging, 2009, 36(Suppl 1): S131-S138.
[30] Fullerton GD. The development of technologies for molecular imaging should be driven principally by biological questions to be addressed rather than by simply modifying existing imaging technologies. For the preposition. MedPhys, 2005, 32(5): 1231-1232.