[1] 张良安, 王丹, 徐志勇, 等.  放射外照射事故剂量重建中的蒙特卡罗模拟方法[J]. 中华放射医学与防护杂志, 2004, 24(6): 565-568.   doi: 10.3760/cma.j.issn.0254-5098.2004.06.031
Zhang LA, Wang D, Xu ZY, et al.  Dose reconstruction in external irradiation accident using Monte Carlo simulating method[J]. Chin J Radiol Med Prot, 2004, 24(6): 565-568.   doi: 10.3760/cma.j.issn.0254-5098.2004.06.031
[2]

Battistoni G, Bauer J, Boehlen TT, et al. The FLUKA code: an accurate simulation tool for particle therapy[J/OL]. Front oncol, 2016, 6: 116[2019-06-02]. http://www.frontiersin.org/oncology. DOI: 10.3389/fonc.2016.00116.

[3] Goorley T, James M, Booth T, et al.  Features of MCNP6[J]. Ann Nucl Energy, 2016, 87(2): 772-783.   doi: 10.1051/snamc/201406011
[4] Kawrakow I.  Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version[J]. Med Phys, 2000, 27(3): 485-498.   doi: 10.1118/1.598917
[5] Sempau J, Fernández-Varea JM, Acosta E, et al.  Experimental benchmarks of the Monte Carlo code PENELOPE[J]. Nucl Instrum Methods Phys Res B, 2003, 207(2): 107-123.   doi: 10.1016/S0168-583X(03)00453-1
[6]

Guatelli S, Cutajar D, Oborn B, et al. Introduction to the geant4 simulation toolkit[J/OL]. AIP Conf Proc, 2011, 1345(1): 303−322[2019-06-02]. https://aip.scitation.org/doi/pdf/10.1063/1.3576174. DOI: 10.1063/1.3576174.

[7] Na YH, Zhang B, Zhang J, et al.  Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms[J]. Phys Med Biol, 2010, 55(13): 3789-3811.   doi: 10.1088/0031-9155/55/13/015
[8] 李东明, 贾书海, 李厚文.  基于MCNP使用中国人体模型对全身计数器的效率模拟研究[J]. 核电子学与探测技术, 2013, 33(12): 1502-1506.   doi: 10.3969/j.issn.0258-0934.2013.12.017
Li DM, Jia SH, Li HW.  A study of chinese adult counting efficiency calibration factors for a whole body counter by MCNP[J]. Nuclear Electronics & Detection Technology, 2013, 33(12): 1502-1506.   doi: 10.3969/j.issn.0258-0934.2013.12.017
[9] 丁艳秋, 李明生, 刘运宏, 等.  应用仿真人体模型估算辐照场所受照人员物理剂量的方法研究[J]. 中国医学装备, 2015, 12(2): 8-10.   doi: 10.3969/J.ISSN.1672-8270.2015.02.003
Ding YQ, Li MS, Liu YH, et al.  The research on dose estimation of irradiated persons in radiation source accident by anthropomorphic phantom[J]. China Med Equip, 2015, 12(2): 8-10.   doi: 10.3969/J.ISSN.1672-8270.2015.02.003
[10] Lu W, Wu Z, Qiu R, et al.  Physical dosimetric reconstruction of a radiological accident at Nanjing (China) for clinical treatment using thudose[J]. Health Phys, 2017, 113(5): 327-334.   doi: 10.1097/HP.0000000000000711
[11] 郑钧正, 李君利.  关注现代医学物理进展, 加强医用辐射防护[J]. 辐射防护, 2008, 28(6): 377-384.   doi: CNKI:SUN:FSFH.O.2008-06-005
Zheng JZ, Li JL.  Reinforcing the protection against ionizing radiation in medical uses through following the progress in modern medical physics[J]. Radiat Prot, 2008, 28(6): 377-384.   doi: CNKI:SUN:FSFH.O.2008-06-005
[12] Goldberg-Stein S, Liu B, Hahn PF, et al.  Body CT during pregnancy: utilization trends, examination indications, and fetal radiation doses[J]. AJR Am J Roentgenol, 2011, 196(1): 146-151.   doi: 10.2214/AJR.10.4271
[13] 王栋, 邱睿, 潘羽晞, 等.  基于物理体模CT图像的1岁儿童体素体模构建[J]. 原子能科学技术, 2016, 50(4): 757-762.   doi: 10.7538/yzk.2016.50.04.0757
Wang D, Qiu R, Pan YX, et al.  Construction of 1-year-old child voxel phantom based on CT image of physical phantom[J]. Atomic Energy Sci Technol, 2016, 50(4): 757-762.   doi: 10.7538/yzk.2016.50.04.0757
[14] 潘羽晞, 邱睿, 郑钧正, 等.  利用蒙特卡罗建模及估算儿童X-CT检查受照剂量[J]. 辐射防护, 2016, 36(3): 129-134.   doi: CNKI:SUN:FSFH.O.2008-03-001
Pan YX, Qiu R, Zheng JZ, et al.  Modeling and dose estimation of pediatric X-CT examination using Monte Carlo technique[J]. Radiat Prot, 2016, 36(3): 129-134.   doi: CNKI:SUN:FSFH.O.2008-03-001
[15]

Hoseinian-Azghadi E, Rafat-Motavalli L, Miri-Hakimabad H. Development of a 9-months pregnant hybrid phantom and its internal dosimetry for thyroid agents[J]. J Radiat Res, 2014, 55(4): 730−747. DOI: 10.1093/jrr/rrt223

[16]

Stabin MG, Watson EE, Cristy M, et al. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy[R/OL]. Tennessee: Oak Ridge National Lab., TN (United States), 1995: 1−140[2019-06-02]. https://digital.library.unt.edu/ark:/67531/metadc791641/. DOI: 10.2172/91944.

[17] Chen J.  Mathematical models of the embryo and fetus for use in radiological protection[J]. Health Phys, 2004, 86(3): 285-295.   doi: 10.1097/00004032-200403000-00005
[18] Xu XG, Tararenko V, Zhang J, et al.  A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods—RPI-P3, -P6 and -P9[J]. Phys Med Biol, 2007, 52(23): 7023-7044.   doi: 10.1088/0031-9155/52/23/017
[19] Motavalli LR, Hakimabad HM, Azghadi EH.  Fetal and maternal dose assessment for diagnostic scans during pregnancy[J]. Phys Med Biol, 2016, 61(9): 3596-3608.   doi: 10.1088/0031-9155/61/9/3596
[20] Rogers DWO.  Fifty years of Monte Carlo simulations for medical physics[J]. Phys Med Biol, 2006, 51(13): R287-R301.   doi: 10.1088/0031-9155/51/13/R17
[21] Paganetti H, Jiang H, Parodi K, et al.  Clinical implementation of full Monte Carlo dose calculation in proton beam therapy[J]. Phys Med Biol, 2008, 53(17): 4825-4853.   doi: 10.1088/0031-9155/53/17/023
[22] Ma CM, Li JS, Pawlicki T, et al.  A Monte Carlo dose calculation tool for radiotherapy treatment planning[J]. Phys Med Biol, 2002, 47(10): 1671-1689.   doi: 10.1088/0031-9155/47/10/305
[23] Sempau J, Wilderman SJ, Bielajew AF.  DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations[J]. Phys Med Biol, 2000, 45(8): 2263-2291.   doi: 10.1088/0031-9155/45/8/315
[24] 张斌全, 马吉增, 程建平, 等.  体素模型在Monte Carlo模拟计算中的描述[J]. 清华大学学报(自然科学版), 2007, 47(z1): 1085-1088.   doi: 10.3321/j.issn:1000-0054.2007.z1.045
Zhang BQ, Ma JZ, Cheng JP, et al.  Modeling of voxel phantoms for Monte Carlo simulations[J]. J Tsinghua Univ (Sci Technol), 2007, 47(z1): 1085-1088.   doi: 10.3321/j.issn:1000-0054.2007.z1.045
[25] 杨耕, 戴振晖, 蔡春雅, 等.  快速蒙特卡洛模拟调强放疗剂量计算的研究[J]. 中国医学物理学杂志, 2018, 35(4): 384-388.   doi: 10.3969/j.issn.1005-202X.2018.04.003
Yang G, Dai ZH, Cai CY, et al.  Fast Monte Caro simulation for dose calculation in intensity-modulated radiotherapy[J]. Chin J Med Phys, 2018, 35(4): 384-388.   doi: 10.3969/j.issn.1005-202X.2018.04.003
[26] Frezza A, Joachim-Paquet C, Chauvin M, et al.  Validation of irtGPUMCD, a GPU-based Monte Carlo internal dosimetry framework for radionuclide therapy[J]. Phys Med, 2020, 73: 95-104.   doi: 10.1016/j.ejmp.2020.04.010
[27] Jia X, Schuemann J, Paganetti H, et al.  WE-F-105-03: Development of GPMC V2.0, a GPU-Based Monte Carlo dose calculation package for proton radiotherapy[J]. Med Phys, 2013, 40(6): 498-.   doi: 10.1118/1.4815619
[28] 朱红玉, 邱睿, 李君利, 等.  中国成年男性精细眼模型[J]. 清华大学学报(自然科学版), 2017, 57(6): 614-619.   doi: CNKI:SUN:QHXB.O.2017-06-010
Zhu HY, Qiu R, Li JL, et al.  Modeling and dose estimation of pediatric X-CT examination using Monte Carlo technique[J]. J Tsinghua Univ (Sci Technol), 2017, 57(6): 614-619.   doi: CNKI:SUN:QHXB.O.2017-06-010
[29] International Commission on Radiological Protection.  The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103[J]. Ann ICRP, 2007, 37(2-4): 1-332.   doi: 10.1016/j.icrp.2007.10.003
[30] Lee C, Bolch W.  MO-F-110-09: Development of computational lymph node models for pediatric hybrid phantoms for nuclear medicine dosimetry[J]. Med Phys, 2011, 38(6 Part 27): 3729-3729.   doi: 10.1118/1.3613031
[31] 刘欢, 邱睿, 潘羽晞, 等.  中国成年男性参考人体素模型CRAM淋巴结的建立及其在放射性核素治疗中的应用[J]. 清华大学学报(自然科学版), 2016, 56(12): 1290-1296.   doi: 10.16511/j.cnki.qhdxxb.2016.25.039
Liu H, Qiu R, Pan YX, et al.  Development of lymphatic nodes in the Chinese reference adult male voxel model (CRAM) with applications to radionuclide therapy[J]. J Tsinghua Univ (Sci Technol), 2016, 56(12): 1290-1296.   doi: 10.16511/j.cnki.qhdxxb.2016.25.039
[32] 姜晨星, 李春艳, 邱睿, 等.  低能光子致DNA链断裂的蒙特卡罗模拟研究[J]. 原子能科学技术, 2017, 51(5): 916-921.   doi: 10.7538/yzk.2017.51.05.0916
Jiang CX, Li CY, Qiu R, et al.  Research on Monte Carlo simulation of DNA strand break induced by low energy photon[J]. Atomic Energy Sci Technol, 2017, 51(5): 916-921.   doi: 10.7538/yzk.2017.51.05.0916
[33]

Furuta T, Takahashi F. Analyses of radiation shielding and dose reduction in buildings for gamma-rays emitted from radioactive cesium in environment discharged by a nuclear accident[R/OL]. Japanese: Japan Atomic Energy Agency, 2014: 1−100[2019-06-02]. https://doi.org/10.11484/jaea-research-2014-003. DOI: 10.11484/JAEA-RESEARCH-2014-003.

[34] Takuya F, Fumiaki T.  Study of radiation dose reduction of buildings of different sizes and materials[J]. J Nucl Sci Technol, 2015, 52(6): 897-904.   doi: 10.1080/00223131.2014.990939
[35] Hirouchi J, Takahara S, Iijima M, et al.  Identification of penetration path and deposition distribution of radionuclides in houses by experiments and numerical model[J]. Radiat Phys chem, 2017, 140: 127-131.   doi: 10.1016/j.radphyschem.2017.02.005
[36] 伍兴国.  基于AWS云平台的蒙特卡洛模拟[J]. 现代信息科技, 2018, 2(12): 75-78.   doi: 10.3969/j.issn.2096-4706.2018.12.026
Wu XG.  Monte Carlo simulation based on AWS cloud platform[J]. Mod Inform Technol, 2018, 2(12): 75-78.   doi: 10.3969/j.issn.2096-4706.2018.12.026
[37] Wu Y.  Multifunctional neutronics calculation methodology and program for nuclear design and radiation safety evaluation[J]. Fusion Sci Technol, 2018, 74(4): 321-329.   doi: 10.1080/15361055.2018.1475162