[1] Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol, 1974, 34(1): 48-55.
[2] Heller LI, Cates C, Popma J, et al. Intracoronary Doppler assess-ment of moderate coronary artery disease: comparison with 201Tl imaging and coronary angiography. FACTS Study Group. Circula-tion, 1997, 96(2): 484-490.
[3] 朱永胜, 张军, George, 等.经胸彩色多普勒检测冠心病患者冠状动脉左前降支和右冠状动脉远端血流储备.中华心血管病杂志, 2005, 33(9): 801-805.  doi: 10.3760/j:issn:0253-3758.2005.09.008
[4] Nagel E, Thouet T, Klein C, et al. Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic reso-nance in patients after stent deployment. Circulation, 2003, 107(13): 1738-1743.  doi: 10.1161/01.CIR.0000060542.79482.81
[5] Lautamaki R, George RT, Kitagawa K, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging, 2009, 36(4): 576-586.  doi: 10.1007/s00259-008-0972-1
[6] Schindler TH, Zhang XL, Prior JO, et al. Assessment of intra-and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with 13N-ammonia and PET. Eur J Nucl Med Mol Imaging, 2007, 34(8): 1178-1188.  doi: 10.1007/s00259-007-0378-5
[7] Choi Y, Huang SC, Hawkins RA, et al. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer mod-els. J Nucl Med, 1999, 40(6): 1045-55.
[8] Schelbert HR. Quantification of myocardial blood flow: what is the clinical role?. Cardiol Clin, 2009, 27(2): 277-289.
[9] Schindler TH, Schelbert HR, Quercioli A, et al. Cardiac PET imag-ing for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging, 2010, 3(6): 623-640.  doi: 10.1016/j.jcmg.2010.04.007
[10] El Fakhri G, Kardan A, Sitek A, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: comparison with 13N-ammonia PET. J Nucl Med, 2009, 50(7):1062-1071.  doi: 10.2967/jnumed.104.007831
[11] Nekolla SG, Reder S, Saraste A, et al. Evaluation of the novel myocar-dial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with micro-spheres in a pig model. Circulation, 2009, 119(17): 2333-2342.  doi: 10.1161/CIRCULATIONAHA.108.797761
[12] Yu M, Guaraldi MT, Mistry M, et al. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol, 2007, 14(6): 789-798.  doi: 10.1016/j.nuclcard.2007.07.008
[13] Mou T, Jing H, Yang W, et al. Preparation and biodistribution of [18F]FP2OP as myocardial perfusion imaging agent for positron emission tomography. Bioorg Med Chem, 2010, 18(3): 1312-1320.  doi: 10.1016/j.bmc.2009.12.022
[14] Sato A, Terata K, Miura H, et al. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol, 2005, 288(4): H1633-1640.  doi: 10.1152/ajpheart.00575.2004
[15] Prior JO, Schindler TH, Facta AD, et al. Determinants of myocar-dial blood flow response to cold pressor testing and pharmacologic vasodilation in healthy humans. Eur J Nucl Med Mol Imaging, 2007, 34(1): 20-27.  doi: 10.1007/s00259-006-0193-4
[16] Schindler TH, Nitzsche EU, Olschewski M, et al. PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J Nucl Med, 2004, 45(3): 419-428.
[17] Kubo S, Tadamura E, Toyoda H, et al. Effect of caffeine intake on myocardial hyperemic flow induced by adenosine triphosphate and dipyridamole. J Nucl Med, 2004, 45(5): 730-738.
[18] Buus NH, Bottcher M, Hermansen F, et al. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocar-dial hyperemia. Circulation, 2001, 104(19): 2305-2310.  doi: 10.1161/hc4401.098293
[19] Kajander SA, Joutsiniemi E, Saraste M, et al. Clinical value of abso-lute quantification of myocardial perfusion with 15O-water in coro-nary artery disease. Circ Cardiovasc Imaging, 2011, 4(6): 678-684.  doi: 10.1161/CIRCIMAGING.110.960732
[20] Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res, 1985, 57(3): 341-353.  doi: 10.1161/01.RES.57.3.341
[21] Uren NG, Melin JA, De Bruyne B, et al. Relation between myocar-dial blood flow and the severity of coronary-artery stenosis. N Engl J Med, 1994, 330(25): 1782-1788.  doi: 10.1056/NEJM199406233302503
[22] Anagnostopoulos C, Almonacid A, El Fakhri G, et al. Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging, 2008, 35(9): 1593-1601.  doi: 10.1007/s00259-008-0793-2
[23] Parkash R, deKemp RA, Ruddy TD, et al. Potential utility of rubid-ium-82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol, 2004, 11(4): 440-449.  doi: 10.1016/j.nuclcard.2004.04.005
[24] Ziadi MC, Dekemp RA, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomog-raphy facilitate detection of multivessel coronary artery disease. J Nucl Cardiol, 2012, 19(4): 670-80.  doi: 10.1007/s12350-011-9506-5
[25] Ashikawa K, Kanatsuka H, Suzuki T, et al. Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res, 1986, 59(6): 704-711.  doi: 10.1161/01.RES.59.6.704
[26] Jorg-Ciopor M, Namdar M, Turina J, et al. Regional myocardial ische-mia in hypertrophic cardiomyopathy: impact of myectomy. J Thorac Cardiovasc Surg, 2004, 128(2): 163-169.  doi: 10.1016/j.jtcvs.2003.11.003
[27] Cecchi F, Olivotto I, Gistri R, et al. Coronary microvascular dys-function and prognosis in hypertrophic cardiomyopathy. N Engl J Med, 2003, 349(11): 1027-1035.  doi: 10.1056/NEJMoa025050
[28] Canetti M, Akhter MW, Lerman A, et al. Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol, 2003, 92(10): 1246-1249.  doi: 10.1016/j.amjcard.2003.08.002
[29] Stolen KQ, Kemppainen J, Kalliokoski KK, et al. Myocardial perfu-sion reserve and peripheral endothelial function in patients with idio-pathic dilated cardiomyopathy. Am J Cardiol, 2004, 93(1): 64-68.
[30] Neglia D, De Maria R, Masi S, et al. Effects of long-term treatment with carvedilol on myocardial blood flow in idiopathic dilated car-diomyopathy. Heart, 2007, 93(7): 808-813.  doi: 10.1136/hrt.2006.095208
[31] Ganz P, Vita JA. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation, 2003, 108(17): 2049-2053.  doi: 10.1161/01.CIR.0000089507.19675.F9
[32] Schindler TH, Zhang XL, Vincenti G, et al. Role of PET in the evalu-ation and understanding of coronary physiology. J Nucl Cardiol, 2007, 14(4): 589-603.  doi: 10.1016/j.nuclcard.2007.05.006
[33] Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med, 2009, 50(7): 1076-1087.  doi: 10.2967/jnumed.108.054478
[34] Prior JO, Quinones MJ, Hernandez-Pampaloni M, et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tol-erance, and type 2 diabetes mellitus. Circulation, 2005, 111(18):2291-2298.  doi: 10.1161/01.CIR.0000164232.62768.51
[35]

Alexanderson E, Jacome R, Jimenez-Santos M, et al. Evaluation of the endothelial function in hypertensive patients with 13N-ammonia PET [J/OL]. J Nucl Cardiol, 2012[2012-07-09]. http://www.ncbi.nlm.nih.gov/pubmed/22689073. [Epublished online ahead of print June 12, 2012]

[36] Tio RA, Dabeshlim A, Siebelink HM, et al. Comparison between the prognostic value of left ventricular function and myocardial per-fusion reserve in patients with ischemic heart disease. J Nucl Med, 2009, 50(2): 214-219.
[37] Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic val-ue of 13N-ammonia myocardial perfusion positron emission tomog-raphy added value of coronary flow reserve. J Am Coll Cardiol, 2009, 54(2): 150-156.  doi: 10.1016/j.jacc.2009.02.069
[38] Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve ver-sus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME(Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol, 2010, 56(3):177-184.  doi: 10.1016/j.jacc.2010.04.012
[39] Naya M, Morita K, Yoshinaga K, et al. Long-term smoking causes more advanced coronary endothelial dysfunction in middle-aged smokers compared to young smokers. Eur J Nucl Med Mol Imaging, 2011, 38(3): 491-498.  doi: 10.1007/s00259-010-1647-2
[40] Alexanderson E, Garcia-Rojas L, Jimenez M, et al. Effect of ezetim-ibe-simvastatine over endothelial dysfunction in dyslipidemic pati-ents: assessment by 13N-ammonia positron emission tomography. J Nucl Cardiol, 2010, 17(6): 1015-1022.  doi: 10.1007/s12350-010-9273-8
[41] Schindler TH, Facta AD, Prior JO, et al. Improvement in coronary vascular dysfunction produced with euglycaemic control in patients with type 2 diabetes. Heart, 2007, 93(3): 345-349.  doi: 10.1136/hrt.2006.094128
[42] Quinones MJ, Hernandez-Pampaloni M, Schelbert H, et al. Coro-nary vasomotor abnormalities in insulin-resistant individuals. Ann Intern Med, 2004, 140(9): 700-708.  doi: 10.7326/0003-4819-140-9-200405040-00009