[1] Zheng RS, Zeng HM, Zhang SW, et al.  National estimates of cancer prevalence in China, 2011[J]. Cancer Lett, 2016, 370(1): 33-38.   doi: 10.1016/j.canlet.2015.10.003
[2] Peres VC, Veloso DLC, Xavier RM, et al.  Breast cancer in women: recurrence and survival at five years[J]. Texto contexto-enferm, 2015, 24(3): 740-747.   doi: 10.1590/0104-07072015000600014
[3] Nahta R.  Molecular mechanisms of trastuzumab-based treatment in HER2-overexpressing breast cancer[J]. ISRN Oncol, 2012, 2012: 428062-.   doi: 10.5402/2012/428062
[4] Dijkers EC, Oude Munnink TH, Kosterink JG, et al.  Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer[J]. Clin Pharmacol Ther, 2010, 87(5): 586-592.   doi: 10.1038/clpt.2010.12
[5] Ulaner GA, Hyman DM, Ross DS, et al.  Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT[J]. J Nucl Med, 2016, 57(10): 1523-1528.   doi: 10.2967/jnumed.115.172031
[6] Rasaneh S, Rajabi H, Akhlaghpoor S, et al.  Radioimmunotherapy of mice bearing breast tumors with 177Lu-labeled trastuzumab[J]. Turk J Med Sci, 2012, 42(Suppl l): S1292-1298.   doi: 10.3906/sag-1105-29
[7] Bhusari P, Vatsa R, Singh G, et al.  Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients[J]. Int J Cancer, 2017, 140(4): 938-947.   doi: 10.1002/ijc.30500
[8] 王光辉, 陈楠, 王虎霞, 等.  iNOS在不同乳腺病理组织中的表达水平及其与肿瘤临床预后的相关性[J]. 现代肿瘤医学, 2018, 26(1): 52-56.   doi: 10.3969/j.issn.1672-4992.2018.01.014
Wang GH, Chen N, Wang HX, et al.  Expression and clinical significance of iNOS in breast cancer[J]. J Med Oncol, 2018, 26(1): 52-56.   doi: 10.3969/j.issn.1672-4992.2018.01.014
[9] Sadri K, Ren Q, Zhang KJ, et al.  PET imaging of EGFR expression in nude mice bearing MDA-MB-468, a human breast adenocarcinoma[J]. Nucl Med Commun, 2011, 32(7): 563-569.   doi: 10.1097/MNM.0b013e3283419523
[10] Xu N, Cai GM, Ye WZ, et al.  Molecular imaging application of radioiodinated anti-EGFR human Fab to EGFR-overexpressing tumor xenografts[J]. Anticancer Res, 2009, 29(10): 4005-4011.   doi: 10.1016/j.ymeth.2017.07.004
[11]

Vallis KA, Reilly RM, Scollard D, et al. Phase Ⅰ trial to evaluate the tumor and normal tissue uptake, radiation dosimetry and safety of 111In-DTPA-human epidermal growth factor in patients with metastatic EGFR-positive breast cancer[J/OL]. Am J Nucl Med Mol Imaging, 2014, 4(2): 181−192[2019-09-10]. http://europepmc.org/article/PMC/3992211.

[12] Sun XL, Li SW, Shen BZ.  Identification of disease states and response to therapy in humans by utilizing the biomarker EGFR for targeted molecular imaging[J]. Curr Protein Pept Sci, 2016, 17(6): 534-542.   doi: 10.2174/1389203717666160101123610
[13] Wang H, Yu JM, Yang GR, et al.  Assessment of 11C-labeled-4-N-(3-bromoanilino)-6,7-dimethoxyquinazoline as a positron emission tomography agent to monitor epidermal growth factor receptor expression[J]. Cancer Sci, 2007, 98(9): 1413-1416.   doi: 10.1111/j.1349-7006.2007.00562.x
[14] Reilly RM, Kiarash R, Cameron RG, et al.  111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR[J]. J Nucl Med, 2000, 41(3): 429-438.
[15] Zhang XZ, Chen XY.  Preparation and characterization of 99mTc(CO)3-BPy-RGD complex as αvβ3 integrin receptor-targeted imaging agent[J]. Appl Radiat Isot, 2007, 65(1): 70-78.   doi: 10.1016/j.apradiso.2006.07.013
[16] Chen ZY, Fu FM, Li F, et al.  Comparison of [99mTc]3PRGD2 imaging and [18F] FDG PET/CT in breast cancer and expression of integrin αvβ3 in breast cancer vascular endothelial cells[J]. Mol Imaging Biol, 2018, 20(5): 846-856.   doi: 10.1007/s11307-018-1178-y
[17]

邓胜明. 放射性核素标记cRGD-USPIO实现乳腺癌的双模态显像及治疗的实验研究[D]. 苏州: 苏州大学, 2015.

Deng SM. Experimental study of radionuclide labeling cRGD-USPIO for dual-modal imaging and treatment of breast cancer[D]. Suzhou: Soochow University, 2015.

[18] Fowler AM, Clark AS, Katzenellenbogen JA, et al.  Imaging diagnostic and therapeutic targets: steroid receptors in breast cancer[J]. J Nucl Med, 2016, 57(Suppl 1): S75-80.   doi: 10.2967/jnumed.115.157933
[19] van Kruchten M, de Vries EGE, Brown M, et al.  PET imaging of oestrogen receptors in patients with breast cancer[J]. Lancet Oncol, 2013, 14(11): e465-e475.   doi: 10.1016/S1470-2045(13)70292-4
[20] Kurland BF, Peterson LM, Lee JH, et al.  Estrogen receptor binding (18F-FES PET) and glycolytic activity (18F-FDG PET) predict progression-free survival on endocrine therapy in patients with ER+ breast cancer[J]. Clin Cancer Res, 2017, 23(2): 407-415.   doi: 10.1158/1078-0432.CCR-16-0362
[21] Yazaki P, Lwin T, Minnix M, et al.  Improved antibody-guided surgery with a near-infrared dye on a pegylated linker for CEA-positive tumors[J]. J Biomed Opt, 2019, 24(6): 1-9.   doi: 10.1117/1.JBO.24.6.066012
[22] Berche C, Mach JP, Lumbroso JD, et al.  Tomoscintigraphy for detecting gastrointestinal and medullary-thyroid cancers: first clinical results using radiolabelled monoclonal antibodies against carcinoembryonic antigen[J]. Br Med J, 1982, 285(6353): 1447-1451.   doi: 10.1136/bmj.285.6353.1447
[23] Goldenberg DM, Nabi HA.  Breast cancer imaging with radiolabeled antibodies[J]. Semin Nucl Med, 1999, 29(1): 41-48.   doi: 10.1016/s0001-2998(99)80028-2
[24]

van Brummelen EMJ, Huisman MC, de Wit-van der Veen LJ, et al. 89Zr-labeled CEA-targeted IL-2 variant immunocytokine in patients with solid tumors: CEA-mediated tumor accumulation and role of IL-2 receptor-binding[J/OL]. Oncotarget, 2018, 9(37): 24737−24749[2019-09-10]. https://pubmed.ncbi.nlm.nih.gov/29872502. DOI: 10.18632/oncotarget.25343.

[25] Wong JYC, Chu DZ, Williams LE, et al.  A phase I trial of 90Y-DOTA-anti-CEA chimeric T84.66 (cT84.66) radioimmunotherapy in patients with metastatic CEA-producing malignancies[J]. Cancer Biother Radiopharm, 2006, 21(2): 88-100.   doi: 10.1089/cbr.2006.21.88
[26] Heskamp S, Hernandez R, Molkenboer-Kuenen JDM, et al.  α-versus β-emitting radionuclides for pretargeted radioimmunotherapy of carcinoembryonic antigen-expressing human colon cancer xenografts[J]. J Nuclr Med, 2017, 58(6): 926-933.   doi: 10.2967/jnumed.116.187021
[27] Alirezapour B, Rasaee MJ, Jalilian AR, et al.  Development of 64Cu-DOTA-PR81 radioimmunoconjugate for MUC-1 positive PET imaging[J]. Nucl Med Biol, 2016, 43(1): 73-80.   doi: 10.1016/j.nucmedbio.2015.07.012
[28] Salouti M, Babaei MH, Rajabi H, et al.  Preparation and biological evaluation of 177Lu conjugated PR81 for radioimmunotherapy of breast cancer[J]. Nucl Med Biol, 2011, 38(6): 849-855.   doi: 10.1016/j.nucmedbio.2011.02.009
[29] DeNardo SJ, Kramer EL, O'Donnell RT, et al.  Radioimmunotherapy for breast cancer using indium-111/yttrium-90 BrE-3: results of a phase I clinical trial[J]. J Nucl Med, 1997, 38(8): 1180-1185.   doi: 10.1097/00004424-199708000-00009
[30]

Rousseau C, Ruellan AL, Bernardeau K, et al. Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors[J/OL]. EJNMMI Res, 2011, 1(1): 20[2019-09-10]. https://ejnmmires.springeropen.com/articles/10.1186/2191-219X-1-20. DOI: 10.1186/2191-219x-1-20.

[31] 康磊, 霍焱, 王荣福, 等.  MicroRNA-155靶向的放射性标记探针对乳腺癌小鼠模型的活体显像[J]. 北京大学学报: 医学版, 2018, 50(2): 326-330.   doi: 10.3969/j.issn.1671-167X.2018.02.020
Kang L, Huo Y, Wang RF, et al.  In vivo imaging of breast tumors by a 99mTc radiolabeled probe targeting microRNA-155 in mice models[J]. J Peking Univ (Health Sci), 2018, 50(2): 326-330.   doi: 10.3969/j.issn.1671-167X.2018.02.020
[32] Rao PS, Tian X, Qin W, et al.  99mTc-peptide-peptide nucleic acid probes for imaging oncogene mRNAs in tumours[J]. Nucl Med Commun, 2003, 24(8): 857-863.   doi: 10.1097/01.mnm.0000084583.29433.df
[33] Boland A, Ricard M, Opolon P, et al.  Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy[J]. Cancer Res, 2000, 60(13): 3484-3492.   doi: 10.1038/sj.cgt.0242
[34]

Paquette M, Phoenix S, Lawson C, et al. A preclinical PET dual-tracer imaging protocol for ER and HER2 phenotyping in breast cancer xenografts[J/OL]. EJNMMI Res, 2020, 10(1): 69[2020-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334319. DOI: 10.1186/s13550-020-00656-8.

[35]

Zang J, Liu QX, Sui HM, et al. Combined 68Ga-NOTA-evans blue lymphoscintigraphy and 68Ga-NOTA-RM26 PET/CT evaluation of sentinel lymph node metastasis in breast cancer patients[J]. Bioconjug Chem, 2020, 31(2): 396−403. DOI: 10.1021/acs.bioconjchem.9b00789.

[36] Kwon LY, Scollard DA, Reilly RM.  64Cu-labeled trastuzumab Fab-PEG24-EGF radioimmunoconjugates bispecific for HER2 and EGFR: pharmacokinetics, biodistribution, and tumor imaging by PET in comparison to monospecific agents[J]. Mol Pharm, 2017, 14(2): 492-501.   doi: 10.1021/acs.molpharmaceut.6b00963
[37] Razumienko EJ, Chen JC, Cai ZL, et al.  Dual-receptor-targeted radioimmunotherapy of human breast cancer xenografts in athymic mice coexpressing HER2 and EGFR using 177Lu- or 111In-labeled bispecific radioimmunoconjugates[J]. J Nucl Med, 2016, 57(3): 444-452.   doi: 10.2967/jnumed.115.162339
[38]

Kraeber-Bodéré F, Rousseau C, Bodet-Milin C, et al. A pretargeting system for tumor PET imaging and radioimmunotherapy[J/OL]. Front Pharmacol, 2015, 6: 54[2019-09-10]. https://www.frontiersin.org/articles/10.3389/fphar.2015.00054/full. DOI: 10.3389/fphar.2015.00054.

[39]

Cheal SM, Xu H, Guo HF, et al. Theranostic pretargeted radioimmunotherapy of internalizing solid tumor antigens in human tumor xenografts in mice: curative treatment of HER2-positive breast carcinoma[J/OL]. Theranostics, 2018, 8(18): 5106−5125[2019-09-10]. https://www.thno.org/v08p5106.htm. DOI: 10.7150/thno.26585.

[40] Keyaerts M, Xavier C, Heemskerk J, et al.  Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma[J]. J Nucl Med, 2016, 57(1): 27-33.   doi: 10.2967/jnumed.115.162024
[41] Tang L, Yang XJ, Dobrucki LW, et al.  Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors[J]. Angew Chem Int Ed Engl, 2012, 51(51): 12721-12726.   doi: 10.1002/anie.201205271