[1] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1):9-29.
[2] Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation[J]. Antioxid Redox Signal, 2014, 20(9):1447-1462.
[3] Shao L, Sun Y, Zhang Z, et al. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation[J]. Blood, 2010, 115(23):4707-4714.
[4] Mohrin M, Bourke E, Alexander D, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis[J]. Cell Stem Cell, 2010, 7(2):174-185.
[5] Yu H, Shen H, Yuan Y, et al. Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation[J]. Blood, 2010, 115(17):3472-3480.
[6] Carbonneau CL, Despars G, Rojas-Sutterlin S, et al. Ionizing radiation-induced expression of INK4a/ARF in murine bone marrow-derived stromal cell populations interferes with bone marrow homeostasis[J]. Blood, 2012, 119(3):717-726.
[7] Wang Y, Schulte BA, LaRue AC, et al. Total body irradiation selectively induces murine hematopoietic stem cell senescence[J]. Blood, 2006, 107(1):358-366.
[8] Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells[J]. Nature, 2003, 423(6937):302-305.
[9] Molofsky AV, He S, Bydon M, et al. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways[J]. Genes Dev, 2005, 19(12):1432-1437.
[10] Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells[J]. Nature, 2003, 423(6937):255-260.
[11] Spangrude GJ, Brooks DM, Tumas DB. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells:in vivo expansion of stem cell phenotype but not function[J]. Blood, 1995, 85(4):1006-1016.
[12] Meng A, Wang Y, Brown SA, et al. Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and -independent mechanisms[J]. Exp Hematol, 2003, 31(12):1348-1356.
[13] Meng A, Wang Y, Van Zant G, et al. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells[J]. Cancer Res, 2003, 63(17):5414-5419.
[14] Wang Y, Liu L, Pazhanisamy SK, et al. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells[J]. Free Radic Biol Med, 2010, 48(2):348-356.
[15] Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling[J]. Development, 2014, 141(22):4206-4218.
[16] Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells[J]. Nature, 2004, 431(7011):997-1002.
[17] Ito K, Takubo K, Arai F, et al. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes[J]. J Immunol, 2007, 178(1):103-110.
[18] Lewandowski D, Barroca V, Duconge F, et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution[J]. Blood, 2010, 115(3):443-452.
[19] Abbas HA, Maccio DR, Coskun S, et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity[J]. Cell Stem Cell, 2010, 7(5):606-617.
[20] Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool[J]. Cell Stem Cell, 2007, 1(1):101-112.
[21] Chen C, Liu Y, Liu R, et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species[J]. J Exp Med, 2008, 205(10):2397-2408.
[22] Shao L, Wang Y, Chang J, et al. Hematopoietic stem cell senescence and cancer therapy-induced long-term bone marrow injury[J]. Transl Cancer Res, 2013, 2(5):397-411.
[23] Zhang H, Zhai Z, Wang Y, et al. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice[J]. Free Radic Biol Med, 2013, 54:40-50.
[24] Li H, Wang Y, Pazhanisamy SK, et al. Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression[J]. Free Radic Biol Med, 2011, 51(1):30-37.
[25] Wang H, Yang YL, Zhang H, et al. Administration of the resveratrol analogues isorhapontigenin and heyneanol-A protects mice hematopoietic cells against irradiation injuries[J/OL]. Biomed Res Int, 2014, 2014:282657[2015-03-01]. http://www. hindawi. com/journals/bmri/2014/282657/.
[26] Luo Y, Li L, Zou P, et al. Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence[J]. Transplantation, 2014, 97(1):20-29.
[27] Li D, Lu L, Zhang J, et al. Mitigating the effects of Xuebijing injection on hematopoietic cell injury induced by total body irradiation with gamma rays by decreasing reactive oxygen species levels[J]. Int J Mol Sci, 2014, 15(6):10541-10553.
[28] 李德冠樊飞跃, 孟爱民. p38 MAPK通路在造血系统调节中的作用[J].中国药理学通报, 2011, 27(1):4-6.
[29] Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis[J]. J Leukoc Biol, 2009, 86(2):237-250.
[30] Navas TA, Mohindru M, Estes M, et al. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors[J]. Blood, 2006, 108(13):4170-4177.
[31] Zhou L, Opalinska J, Verma A. p38 MAP kinase regulates stem cell apoptosis in human hematopoietic failure[J]. Cell Cycle, 2007, 6(5):534-537.
[32] Tothova Z, Kollipara R, Huntly BJ et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress[J]. Cell, 2007, 128(2):325-339.
[33] Wang Y, Liu L, Zhou D. Inhibition of p38 MAPK attenuates ionizing radiation-induced hematopoietic cell senescence and residual bone marrow injury[J]. Radiat Res, 2011, 176(6):743-752.
[34] Li D, Wang Y, Wu H, et al. Mitigation of ionizing radiation-induced bone marrow suppression by p38 inhibition and G-CSF administration[J]. J Radiat Res, 2011, 52(6):712-716.
[35]

Li D, Wang Y, Wu H, et al. The effects of p38 MAPK inhibition combined with G-CSF administration on the hematoimmune system in mice with irradiation injury[J/OL]. PLoS One, 2013, 8(4): e62921[2015-03-01]. http://journals. plos. org/plosone/article?id=10. 1371/journal. pone. 0062921.

[36] 李德冠, 路璐, 吴红英, 等. G-CSF联合SB203580对4 Gy照射小鼠免疫系统的作用[J].国际放射医学核医学杂志, 2014, 38(4):216-218.
[37] Shao L, Feng W, Li H, et al. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner[J]. Blood, 2014, 123(20):3105-3115.
[38] Geiger H. HSC senescence upon irradiation[J]. Blood, 2014, 123(20):3060-3061.