[1] Weissleder R.  Molecular imaging: exploring the next frontier[J]. Radiology, 1999, 212(3): 609-614.   doi: 10.1148/radiology.212.3.r99se18609
[2] Weissleder R, Mahmood U.  Molecular imaging[J]. Radiology, 2001, 219(2): 316-333.   doi: 10.1148/radiology.219.2.r01ma19316
[3] Blasberg RG, Tjuvajev JG.  Molecular-genetic imaging: current and future perspectives[J]. J Clin Invest, 2003, 111(11): 1620-1629.   doi: 10.1172/JCI18855
[4]

Khalil MM, Tremoleda JL, Bayomy TB, et al. Molecular SPECT Imaging: An Overview[J/OL]. Int J Mol Imaging, 2011, 2011: 796025. [2011-07-24]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094893/.

[5] Young KJ, Jun OS, Sook RJ, et al.  Synthesis of 99mTc(CO)3-deoxyuridine derivatives as potential HSV1-tk gene expression imag-ing agents[J]. Appl Radiat Isot, 2008, 66(4): 489-496.   doi: 10.1016/j.apradiso.2007.11.016
[6] Chin FT, Namavari M, Levi J, et al.  Semiautomated radiosynthesis and biological evaluation of[18F]FEAU: a novel PET imaging agent for HSV1-tk/sr39tk reporter gene expression[J]. Mol Imaging Biol, 2008, 10(2): 82-91.   doi: 10.1007/s11307-007-0122-3
[7] Cai H, Yin D, Zhang L, et al.  Preparation and biological evaluation of 2-amino-6-[18F]fluoro-9-(4-hydroxy-3-hydroxy-methylbutyl)purine(6-[18F]FPCV)as a novel PET probe for imaging HSV1-tk reporter gene expression[J]. Nucl Med Biol, 2007, 34(6): 717-725.   doi: 10.1016/j.nucmedbio.2007.06.005
[8] Cho SY, Ravasi L, Szajek LP, et al.  Evaluation of 76Br-FBAU as a PET reporter probe for HSV1-tk gene expression imaging using mouse models of human glioma[J]. J Nucl Med, 2005, 46(11): 1923-1930.
[9] Alauddin MM, Shahinian A, Gordon EM, et al.  Direct comparison of radiolabeled probes FMAU, FHBG, and FHPG as PET imaging agents for HSV1-tk expression in a human breast cancer model[J]. Mol Imaging, 2004, 3(2): 76-84.   doi: 10.1162/1535350041464900
[10] Liang Q, Gotts J, Satyamurthy N, et al.  Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus[J]. Mol Ther, 2002, 6(1): 73-82.   doi: 10.1006/mthe.2002.0626
[11] Vadysirisack DD, Shen DH, Jhiang SM.  Correlation of Na+/I-symporter expression and activity: implications of Na+/I-symporter as an imaging reporter gene[J]. J Nucl Med, 2006, 47(1): 182-190.
[12] Anton M, Wagner B, Haubner R, et al.  Use of the norepinephrine transporter as a reporter gene for non-invasive imaging of genetically modified cells[J]. J Gene Med, 2004, 6(1): 119-126.   doi: 10.1002/jgm.472
[13] Lewis MR.  A"new"reporter in the field of imaging reporter genes: correlating gene expression and function of the sodium/iodide symporter[J]. J Nucl Med, 2006, 47(1): 1-3.
[14] Bogdanov A Jr, Petherick P, Marecos E, et al.  In vivo localization of diglycylcysteine-bearing synthetic peptides by nuclear imaging of oxotechnetate transchelation[J]. Nucl Med Biol, 1997, 24(8): 739-742.   doi: 10.1016/S0969-8051(97)00117-0
[15] Northrop JP, Bednarski M, Barbieri SO, et al.  Cell surface expression of single chain antibodies with applications to imaging of gene expression in vivo[J]. Eur J Nucl Med Mol Imaging, 2003, 30(9): 1292-1298.   doi: 10.1007/s00259-003-1237-7
[16] Pfannenberg C, Aschoff P, Dittmann H, et al.  PET/CT with 18F-FLT: does it improve the therapeutic management of metastatic germ cell tumors?[J]. J Nucl Med, 2010, 51(6): 845-853.   doi: 10.2967/jnumed.109.070425
[17] Smith RA, Guleryuz S, Manning HC.  Molecular imaging metrics to evaluate response to preclinical therapeutic regimens[J]. Front Biosci, 2011, 16: 393-410.   doi: 10.2741/3694
[18] Vande VG, Baekelandt V, Dresselaers T, et al.  Magnetic resonance imaging and spectroscopy methods for molecular imaging[J]. Q J Nucl Med Mol Imaging, 2009, 53(6): 565-585.
[19] Lecchi M, Ottobrini L, Martelli C, et al.  Instrumentation and probes for molecular and cellular imaging[J]. Q J Nucl Med Mol Imaging, 2007, 51(2): 111-126.
[20] Ye F, Wu X, Jeong EK, et al.  A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI[J]. Bioconjug Chem, 2008, 19(12): 2300-2303.   doi: 10.1021/bc800211r
[21]

Hengerer A, Grimm J. Molecular magnetic resonance imaging[J/ OL]. Biomed Imaging Interv J, 2006, 2(2): e8. [2011-07-24]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097616/.

[22] Liu W, Dahnke H, Rahmer J, et al.  Ultrashort T2*relaxometry for quantitation of highly concentrated superparamagnetic iron oxide(SPIO)nanoparticle labeled cells[J]. Magn Reson Med, 2009, 61(4): 761-766.   doi: 10.1002/mrm.21923
[23] Daldrup-Link HE, Brasch RC.  Macromolecular contrast agents for MR mammography: current status[J]. Eur Radiol, 2003, 13(2): 354-365.   doi: 10.1007/s00330-002-1719-1
[24] Glunde K, Artemov D, Penet MF, et al.  Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer[J]. Chem Rev, 2010, 110(5): 3043-3059.   doi: 10.1021/cr9004007
[25] Kiessling F, Gaetjens J, Palmowski M.  Application of molecular ultrasound for imaging integrin expression[J]. Theranostics, 2011, 1: 127-134.   doi: 10.7150/thno/v01p0127
[26] Deshpande N, Needles A, Willmann JK.  Molecular ultrasound imaging: current status and future directions[J]. Clin Radiol, 2010, 65(7): 567-581.   doi: 10.1016/j.crad.2010.02.013
[27] Anderson CR, Hu X, Zhang H, et al.  Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent[J]. Invest Radiol, 2011, 46(4): 215-224.   doi: 10.1097/RLI.0b013e3182034fed
[28] Gessner R, Dayton PA.  Advances in molecular imaging with ultrasound[J]. Mol Imaging, 2010, 9(3): 117-127.
[29] Voigt JU.  Ultrasound molecular imaging[J]. Methods, 2009, 48(2): 92-97.   doi: 10.1016/j.ymeth.2009.03.011
[30] Ntziachristos V, Bremer C, Weissleder R.  Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging[J]. Eur Radiol, 2003, 13(1): 195-208.   doi: 10.1007/s00330-002-1524-x
[31] Hilderbrand SA, Weissleder R.  Near-infrared fluorescence: application to in vivo molecular imaging[J]. Curr Opin Chem Biol, 2010, 14(1): 71-79.   doi: 10.1016/j.cbpa.2009.09.029
[32] Qin C, Zhu S, Tian J.  New optical molecular imaging systems[J]. Curr Pharm Biotechnol, 2010, 11(6): 620-627.   doi: 10.2174/138920110792246519
[33] Popovtzer R, Agrawal A, Kotov NA, et al.  Targeted gold nanoparticles enable molecular CT imaging of cancer[J]. Nano Lett, 2008, 8(12): 4593-4596.   doi: 10.1021/nl8029114
[34] Wyss C, Schaefer SC, Juillerat-Jeanneret L, et al.  Molecular imaging by micro-CT: specific E-selectin imaging[J]. Eur Radiol, 2009, 19(10): 2487-2494.   doi: 10.1007/s00330-009-1434-2
[35] Montet X, Pastor CM, Vallee JP, et al.  Improved visualization of vesselsandhepatictumorsbymicro-computedtomography(CT)using iodinated liposomes[J]. Invest Radiol, 2007, 42(9): 652-658.   doi: 10.1097/RLI.0b013e31805f445b
[36] Pan D, Roessl E, Schlomka JP, et al.  Computed tomography in color: NanoK-enhanced spectral CT molecular imaging[J]. Angew Chem Int Ed Engl, 2010, 49(50): 9635-9639.   doi: 10.1002/anie.201005657
[37] Lucignani G.  PET-MRI synergy in molecular, functional and anatomical cancer imaging[J]. Eur J Nucl Med Mol Imaging, 2008, 35(8): 1550-1553.   doi: 10.1007/s00259-008-0829-7
[38] Schiepers C, Dahlbom M.  Molecular imaging in oncology: the aceptance of PET/CT and the emergence of MR/PET imaging[J]. Eur Radiol, 2011, 21(3): 548-554.   doi: 10.1007/s00330-010-2033-y
[39] Sauter AW, Wehrl HF, Kolb A, et al.  Combined PET/MRI: one step further in multimodality imaging[J]. Trends Mol Med, 2010, 16(11): 508-515.   doi: 10.1016/j.molmed.2010.08.003