[1] Hosseini AA, Simpson RJ, Altaf N, et al.  Magnetic resonance imaging plaque hemorrhage for risk stratification in carotid artery disease with moderate risk under current medical therapy[J]. Stroke, 2017, 48(3): 678-685.   doi: 10.1161/STROKEAHA.116.015504
[2] Saba L, Saam T, Jäger HR, et al.  Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurol, 2019, 18(6): 559-572.   doi: 10.1016/S1474-4422(19)30035-3
[3] Schindler A, Schinner R, Altaf N, et al.  Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data[J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 395-406.   doi: 10.1016/j.jcmg.2019.03.028
[4] Chistiakov DA, Orekhov AN, Bobryshev YV.  Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability[J]. Acta Physiol (Oxf), 2015, 213(3): 539-553.   doi: 10.1111/apha.12438
[5] Rafailidis V, Li X, Sidhu PS, et al.  Contrast imaging ultrasound for the detection and characterization of carotid vulnerable plaque[J]. Cardiovasc Diagn Ther, 2020, 10(4): 965-981.   doi: 10.21037/cdt.2020.01.08
[6] Giannoni MF, Vicenzini E, Citone M, et al.  Contrast carotid ultrasound for the detection of unstable plaques with neoangiogenesis: a pilot study[J]. Eur J Vasc Endovasc Surg, 2009, 37(6): 722-727.   doi: 10.1016/j.ejvs.2008.12.028
[7] Rafailidis V, Huang DY, Yusuf GT, et al.  General principles and overview of vascular contrast-enhanced ultrasonography[J]. Ultrasonography, 2020, 39(1): 22-42.   doi: 10.14366/usg.19022
[8] Zamani M, Skagen K, Scott H, et al.  Carotid plaque neovascularization detected with superb microvascular imaging ultrasound without using contrast media[J]. Stroke, 2019, 50(11): 3121-3127.   doi: 10.1161/STROKEAHA.119.025496
[9] Zhu YC, Jiang XZ, Bai QK, et al.  Evaluating the efficacy of atorvastatin on patients with carotid plaque by an innovative ultrasonography[J]. J Stroke Cerebrovasc Dis, 2019, 28(3): 830-837.   doi: 10.1016/j.jstrokecerebrovasdis.2018.11.027
[10] Chen XJ, Wang HY, Jiang YX, et al.  Neovascularization in carotid atherosclerotic plaques can be effectively evaluated by superb microvascular imaging (SMI): initial experience[J]. Vasc Med, 2020, 25(4): 328-333.   doi: 10.1177/1358863X20909992
[11] Meng Q, Xie X, Li L, et al.  Assessment of neovascularization of carotid artery atherosclerotic plaques using superb microvascular imaging: a comparison with contrast-enhanced ultrasound imaging and histology[J]. Quant Imaging Med Surg, 2021, 11(5): 1958-1969.   doi: 10.21037/qims-20-933
[12] Song Y, Xing H, Zhang ZQ, et al.  Detection of carotid atherosclerotic intraplaque neovascularization using superb microvascular imaging: a meta-analysis[J]. J Ultrasound Med, 2021, 40(12): 2629-2638.   doi: 10.1002/jum.15652
[13] Zhang Y, Cao J, Zhou JY, et al.  Plaque elasticity and intraplaque neovascularisation on carotid artery ultrasound: a comparative histological study[J]. Eur J Vasc Endovasc Surg, 2021, 62(3): 358-366.   doi: 10.1016/j.ejvs.2021.05.026
[14]

Olejarz W, Łacheta D, Kubiak-Tomaszewska G. Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability[J/OL]. Int J Mol Sci, 2020, 21(11): 3946[2021-12-16]. https://www.mdpi.com/1422-0067/21/11/3946. DOI: 10.3390/ijms21113946.

[15] Murgia A, Erta M, Suri JS, et al.  CT imaging features of carotid artery plaque vulnerability[J]. Ann Transl Med, 2020, 8(19): 1261-.   doi: 10.21037/atm-2020-cass-13
[16]

Ajduk M, Bulimbasić S, Pavić L, et al. Comparison of multidetector-row computed tomography and duplex Doppler ultrasonography in detecting atherosclerotic carotid plaques complicated with intraplaque hemorrhage[J/OL]. Coll Antropol, 2013, 37(1): 213−219[2021-12-16]. https://www.bib.irb.hr/666953.

[17] Saba L, Francone M, Bassareo PP, et al.  CT attenuation analysis of carotid intraplaque hemorrhage[J]. AJNR Am J Neuroradiol, 2018, 39(1): 131-137.   doi: 10.3174/ajnr.A5461
[18] Eisenmenger LB, Aldred BW, Kim SE, et al.  Prediction of carotid intraplaque hemorrhage using adventitial calcification and plaque thickness on CTA[J]. AJNR Am J Neuroradiol, 2016, 37(8): 1496-1503.   doi: 10.3174/ajnr.A4765
[19] Yang J, Pan XJ, Zhang B, et al.  Superficial and multiple calcifications and ulceration associate with intraplaque hemorrhage in the carotid atherosclerotic plaque[J]. Eur Radiol, 2018, 28(12): 4968-4977.   doi: 10.1007/s00330-018-5535-7
[20] Shinohara Y, Sakamoto M, Kuya K, et al.  Assessment of carotid plaque composition using fast-kV switching dual-energy CT with gemstone detector: comparison with extracorporeal and virtual histology-intravascular ultrasound[J]. Neuroradiology, 2015, 57(9): 889-895.   doi: 10.1007/s00234-015-1541-5
[21] Cocker MS, Spence JD, Hammond R, et al.  [18F]-Fluorodeoxyglucose PET/CT imaging as a marker of carotid plaque inflammation: comparison to immunohistology and relationship to acuity of events[J]. Int J Cardiol, 2018, 271: 378-386.   doi: 10.1016/j.ijcard.2018.05.057
[22]

Tan H, Zhou J, Yang XD, et al. 99mTc-labeled bevacizumab for detecting atherosclerotic plaque linked to plaque neovascularization and monitoring antiangiogenic effects of atorvastatin treatment in ApoE−/− mice[J/OL]. Sci Rep, 2017, 7(1): 3504[2021-12-16]. https://www.nature.com/articles/s41598-017-03276-w. DOI: 10.1038/s41598-017-03276-w.

[23] Zhou T, Jia SQ, Wang X, et al.  Diagnostic performance of MRI for detecting intraplaque hemorrhage in the carotid arteries: a meta-analysis[J]. Eur Radiol, 2019, 29(10): 5129-5138.   doi: 10.1007/s00330-019-06053-7
[24] 高天理.  颈动脉易损斑块影像学评估的现在与未来[J]. 中国全科医学, 2021, 24(32): 4055-4060,4067.   doi: 10.12114/j.issn.1007-9572.2021.01.101
Gao TL.  Imaging evaluation of vulnerable carotid plaques: present status and future prospect[J]. Chin Gen Pract, 2021, 24(32): 4055-4060,4067.   doi: 10.12114/j.issn.1007-9572.2021.01.101
[25] 郭银平, 喻志源, 骆翔.  动脉粥样硬化斑块内出血的研究进展[J]. 神经损伤与功能重建, 2021, 16(9): 518-521.   doi: 10.16780/j.cnki.sjssgncj.20200165
Guo YP, Yu ZY, Luo X.  Research progress of intra atherosclerotic plaque hemorrhage[J]. Neural Inj Funct Reconstr, 2021, 16(9): 518-521.   doi: 10.16780/j.cnki.sjssgncj.20200165
[26] Li DY, Zhao HL, Chen XY, et al.  Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraplaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study[J]. Eur Radiol, 2018, 28(4): 1681-1686.   doi: 10.1007/s00330-017-5096-1
[27] Liu J, Sun J, Balu N, et al.  Semiautomatic carotid intraplaque hemorrhage volume measurement using 3D carotid MRI[J]. J Magn Reson Imaging, 2019, 50(4): 1055-1062.   doi: 10.1002/jmri.26698
[28] Li DY, Qiao HY, Han YJ, et al.  Histological validation of simultaneous non-contrast angiography and intraplaque hemorrhage imaging (SNAP) for characterizing carotid intraplaque hemorrhage[J]. Eur Radiol, 2021, 31(5): 3106-3115.   doi: 10.1007/s00330-020-07352-0
[29] Altaf N, Akwei S, Auer DP, et al.  Magnetic resonance detected carotid plaque hemorrhage is associated with inflammatory features in symptomatic carotid plaques[J]. Ann Vasc Surg, 2013, 27(5): 655-661.   doi: 10.1016/j.avsg.2012.10.011
[30] Bos D, Arshi B, van den Bouwhuijsen QJA, et al.  Atherosclerotic carotid plaque composition and incident stroke and coronary events[J]. J Am Coll Cardiol, 2021, 77(11): 1426-1435.   doi: 10.1016/j.jacc.2021.01.038
[31] Kurosaki Y, Yoshida K, Fukuda H, et al.  Asymptomatic carotid T1-high-intense plaque as a risk factor for a subsequent cerebrovascular ischemic event[J]. Cerebrovasc Dis, 2017, 43(5/6): 250-256.   doi: 10.1159/000455973
[32] Ambale-Venkatesh B, Yang XY, Wu CO, et al.  Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis[J]. Circ Res, 2017, 121(9): 1092-1101.   doi: 10.1161/CIRCRESAHA.117.311312