[1] Ishikawa K, Ishii H, Saito T. DNA damage-dependent cell cycle checkpoints and genomie stability. DNA Cell Biol, 2006, 25(7):406-411.
[2] Friedberg EC. DNA damage and repair. Nature, 2003,421(6921):436-440.
[3] Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015):316-323.
[4] Cimprich KA, Cortez D. ATR:an essential regulator of genome integrity. Nat Rev Mol Cell Biol, 2008, 9(8):616-627.
[5] Liu J, Lin A. Role of JNK activation in apoptosis:a double-edged sword. Cell Res, 2005, 15(1):36-42.
[6] Abdollahi A, Lord KA, Hoffman-Liebermann B, et al. Sequence and expression of a cDNA encoding MyD118:a novel myeloid differentiation primary response gene induced by multiple cytokines. Oncogene, 1991, 6(1):165-167.
[7] Vairapandi M, Balliet AG, Hoffman B, et al. GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and GJM cell cycle checkpoints induced by genotoxic stress. J Cell Physiol, 2002, 192(3):327-338.
[8] Yoo J, Ghiassi M, Jirmanova L, et al. Transforming growth factorbeta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem, 2003, 278(44):43001-43007.
[9] Jung HJ, Kim EH, Mun JY, et al. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene, 2007, 26(54):7517-7525.
[10] Desjardins S, Ouellette G, Labile Y, et al. Analysis of GADD45A sequence variations in French Canadian families with high risk of breast cancer. J Hum Genet, 2008, 53(6):490-498.
[11] Zhan Q. Gadd45a, a p53 and BRCAl-regulated stress protein, in cellular response to DNA damage. Mutat Res, 2005, 569(1-2):133-143.
[12] Wang XW, Zhan Q, Coursen JD, et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA, 1999, 96(7):3706-3711.
[13] Han C, Demetris AJ, Michalopoulos GK, et al. PPARgamma ligands inhibit cholangiocarcinoma cell growth through p53-dependent GADD45 and p21 pathway. Hepatology, 2003, 38(1):167-177.
[14] Smith GB, Mocarski ES. Contribution of GADD45 family members to cell death suppression by cellular Bcl-xL and cytomegalovirus vMIA. J Virol, 2005, 79(23):14923-14932.
[15] Liebermann DA, Hoffman B. Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis, 2007, 39(3):329-335.
[16] Ying J, Srivastava G, Hsieh WS, et al. The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in muhiple tumors. Clin Cancer Res, 2005, 11(18):6442-6449.
[17] Tront JS, Hoffman B, Liebermann DA. Gadd45a suppresses Rasdriven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res, 2006, 66(17):8448-8454.
[18] Candal E, Thermes V, Joly JS, et al. Medaka as a model system for the characterisation of cell cycle regulators:a functional analysis of Ol-Gadd45gamma during early embryogenesis. Mech Dev, 2004, 121(7-8):945-958.
[19] Maeda T, Espino RA, Chomey EG, et al. Loss of p21WAF1/Cipl in Gadd45-deficient keratinocytes restores DNA repair capacity. Carcinogenesis, 2005, 26(10):1804-1810.
[20] Vairapandi M, Balliet AG, Fornace AJ Jr, et al. The differentiation primary response gene MyD118, related to GADIMS, encodes for a nuclear protein which interacts with PCNA and p21WAFI/CIP1. Oncogene, 1996, 12(12):2579-2594.
[21] Gupta SK, Gupta M, Hoffman B, et al. Hematopoietic cells from gadd45a-deficient and gadd45b-defieient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oneogene, 2006, 25(40):5537-5546.
[22] Barreto G, Schafer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 2007, 445(7128):671-675.
[23] Bulavin DV, Kovalsky O, Hollander MC, et al. Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen activated protein kinase activation by disruption of Gadd45a. Mol Cell Biol, 2003, 23(11):3859-3871.
[24] Hollander MC, Fornace AJ Jr. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a, Oncogene, 2002, 21(40):6228-6233.
[25] Wang X, Wang RH, Li W, et al. Genetic interactions between Brcal and Gadd45a in centrosome duplication, genetic stability, and neural tube closure. J Biol Chem, 2004, 279(28):29606-29614.
[26] Hollander MC, Philburn RT, Patterson AD, et al. Genomic instability in Gadd45a-/-cells is coupled with S-phase checkpoint defects. Cell Cycle, 2005, 4(5):704-709.
[27] Bishop A J, Hollander MC, Kosaras B, et al. Atm-, p53-, and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res, 2003, 63(17):5335-5343.
[28] Tront JS, Hoffman B, Liebermann DA. Gadd45a suppresses Rasdriven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res, 2006, 66(17):8448-8454.
[29] Lundberg AS, Hahn WC, Gupta P, et al. Genes involved in senescence and immortalization. Curr Opin Cell Biol, 2000, 12(6):705-709.