[1] Belka C, Budach W, Kortman RD, et al. Radiation induced CNS toxicity-molecular and cellular mechanisms[J]. Br J Cancer, 2001, 85(9):1233-1239.
[2] Peña LA, Fuks Z, Kolesinck RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system:protection by fibroblast growth factor and sphingomyelinase deficiency[J]. Cancer Res, 2000, 60(2):321-327.
[3] Kimura T, Sako K, Tohyama Y, et al. Diagnosis and treatment of progressive space-occupying radiation necrosis following stereotactic radiosurgery for brain metastasis:value of proton magnetic resonance spectroscopy[J]. Acta Neurochir(Wien), 2003, 145(7):557-564.
[4] 林曰增,张雪林,阎卫平.鼻咽癌放疗后放射性脑病的CT灌注研究[J].中华放射学杂志,2002,36(4):339-343.
[5] Kutita H, Kawahara N, Asai A, et al. Radiation-induced apotosis of oligodendrocyteS in the adult rat brain[J]. Neurol Res, 2001, 23(8):869-874.
[6] Nieder C, Andratschke N, Price RE, et al. Innovative prevention strategies for radiation necrosis of the central nervous system[J]. Anticancer Res, 2002, 22(2A):1017-1023.
[7] New P. Radiation injury to the nervous system[J]. Curt Opin Neurol, 2001, 14(6):725-734.
[8] Evans ES, Hahn CA, Kocak Z, et al. The role of functional imaging in the diagnosis and management of late normal tissue injury[J]. Semin Radiat Oncol, 2007, 17(2):72-80.
[9] Patronas NJ, Di Chiro G, Brooks RA, et al. Work in progress:18F fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain[J]. Radiology, 1982, 144(4):885-889.
[10] Spaeth N, Wyss MT, Weber B, et al. Uptake of 18F-tluorocholine, 18F-tluoroethyl-L-tyrosine,and 18F-FDG in acute cerebral radiation injury in the rat:implications for separation of radiation necrosis from tumor recurrence[J]. J Nucl Med, 2004, 45(11):1931-1938.
[11] Hustinx R, Pourdehnad M, Kaschten B, et al. PET imaging for differentiating recurrent brain tumor from radiation necrosis[J].Radiol Clin Noah Am, 2005, 43(1):35-47.
[12] Chao ST, Sub JH, Raja S, et al. The sensitivity and specificity of FDG PET indistinguishing recurrent brain tumor from redionecrosis in patients treated with stereotactic radiosugery[J]. Int J Cancer, 2001, 96(3):191-197.
[13] Coleman RE, Hoffman JM, Hanson MW, et al. Clinical application of PET for the evaluation of brain tumor[J]. J Nucl Med, 1991, 32(4):616-622.
[14] Beuthien-Baumann B, Hahn G, Winkler C, et al. Differentiation between recurrent tumor and radiation necrosis in a child with anaplastic ependymoma after chemotherapy and radiation therapy[J]. Strahlenther Onkol, 2003, 179(12):819-822.
[15] Muthukrishnan A, Bajoghli M, Mountz JM. Delayed development of radiation vaseulopathy of the brain stem eortfirmed by F-18 FDG PET in a ease of anaplastie astroeytoma[J]. Clin Nuel Med, 2007, 32(7):527-531.
[16] Ishikawa M, kikuchi H, Miyatake S, et al. Glucose consumption in recurrent gliomas[J]. Neurosurgery, 1993, 33(1):28-33.
[17] Ricci PE, Karis JP, Heiserman JE, et al. Differentiating recurrent tumor from radiation necrosis:time for re-evaluation of positron emission tomography?[J]. AJNR Am J Neuroradiol, 1998, 19(3):407-413.
[18] Huang Z, Zuo C, Guan Y, et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours[J]. Nucl Med Commun, 2008, 29(4):354-358.
[19] Hung Gu, Tasi Sc, Lin WY, et al. Extraordinarily high F-18 FDG uptake cause by radiation necrosis in a patient with nasopharyngeal carcinoma[J]. Clin Nucl Med, 2005, 30(8):558-559.
[20] Schlemmer HP, Bachert P, Henze M, et al. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy[J]. Neuroradiology, 2002, 44(3):216-222.
[21] Yang S, Zhang C, Zhu T, et al. Resection of gliomas using positron emission tomography/computed tomography neuronavigation[J]. Neurol Med Chir (Tokyo), 2007, 47(9):397-401.