[1] 中华医学会核医学分会.  131I治疗分化型甲状腺癌指南(2021版)[J]. 中华核医学与分子影像杂志, 2021, 41(4): 218-241.   doi: 10.3760/cma.j.cn321828-20201113-00412
Chinese Society of Nuclear Medicine.  Guidelines for radioiodine therapy of differentiated thyroid cancer (2021 edition)[J]. Chin J Nucl Med Mol Imaging, 2021, 41(4): 218-241.   doi: 10.3760/cma.j.cn321828-20201113-00412
[2] Liu JR, Liu YQ, Lin YS, et al.  Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy[J]. Endocrinol Metab (Seoul), 2019, 34(3): 215-225.   doi: 10.3803/EnM.2019.34.3.215
[3]

Aashiq M, Silverman DA, Na'ara S, et al. Radioiodine-refractory thyroid cancer: molecular basis of redifferentiation therapies, management, and novel therapies[J/OL]. Cancers (Basel), 2019, 11(9): 1382[2021-03-24]. https://www.ncbi.nlm.nih.gov/pmc/journals/2105. DOI: 10.3390/cancers11091382.

[4] Subbiah V, Kreitman RJ, Wainberg ZA, et al.  Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer[J]. J Clin Oncol, 2018, 36(1): 7-13.   doi: 10.1200/JCO.2017.73.6785
[5]

Zhang HL, Chen D. Synergistic inhibition of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces sodium/iodide symporter (NIS) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells[J/OL]. Thyroid Res, 2018, 11: 13[2021-03-24]. https://thyroidresearchjournal.biomedcentral.com/articles/10.1186/s13044-018-0057-6. DOI: 10.1186/s13044-018-0057-6.

[6] Long GV, Flaherty KT, Stroyakovskiy D, et al.  Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study[J]. Ann Oncol, 2017, 28(7): 1631-1639.   doi: 10.1093/annonc/mdx176
[7] Montero-Conde C, Ruiz-Llorente S, Dominguez JM, et al.  Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas[J]. Cancer Discov, 2013, 3(5): 520-533.   doi: 10.1158/2159-8290.CD-12-0531
[8] Alonso-Valenteen F, Pacheco S, Srinivas D, et al.  HER3-targeted protein chimera forms endosomolytic capsomeres and self-assembles into stealth nucleocapsids for systemic tumor homing of RNA interference in vivo[J]. Nucleic Acids Res, 2019, 47(21): 11020-11043.   doi: 10.1093/nar/gkz900
[9]

Cheng LX, Jin YC, Liu M, et al. HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E[J/OL]. Oncotarget, 2017, 8(12): 19843−19854[2021-03-24]. https://www.oncotarget.com/article/15773/text. DOI: 10.18632/oncotarget.15773.

[10] Kogai T, Sajid-Crockett S, Newmarch LS, et al.  Phosphoinositide-3-kinase inhibition induces sodium/iodide symporter expression in rat thyroid cells and human papillary thyroid cancer cells[J]. J Endocrinol, 2008, 199(2): 243-252.   doi: 10.1677/JOE-08-0333
[11] Liu YY, Zhang XL, Ringel MD, et al.  Modulation of sodium iodide symporter expression and function by LY294002, Akti-1/2 and Rapamycin in thyroid cells[J]. Endocr Relat Cancer, 2012, 19(3): 291-304.   doi: 10.1530/ERC-11-0288
[12] de Souza EC, Padrón AS, Braga WM, et al.  MTOR downregulates iodide uptake in thyrocytes[J]. J Endocrinol, 2010, 206(1): 113-120.   doi: 10.1677/JOE-09-0436
[13] Plantinga TS, Heinhuis B, Gerrits D, et al.  mTOR inhibition promotes TTF1-dependent redifferentiation and restores iodine uptake in thyroid carcinoma cell lines[J]. J Clin Endocrinol Metab, 2014, 99(7): E1368-E1375.   doi: 10.1210/jc.2014-1171
[14] Galrão AL, Camargo RY, Friguglietti CU, et al.  Hypermethylation of a new distal sodium/iodide symporter (NIS) enhancer (NDE) is associated with reduced NIS expression in thyroid tumors[J]. J Clin Endocrinol Metab, 2014, 99(6): E944-E952.   doi: 10.1210/jc.2013-1450
[15] Zhang ZJ, Liu DX, Murugan AK, et al.  Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer[J]. Endocr Relat Cancer, 2014, 21(2): 161-173.   doi: 10.1530/ERC-13-0399
[16] Kitazono M, Robey R, Zhan ZR, et al.  Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na+/I- symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells[J]. J Clin Endocrinol Metab, 2001, 86(7): 3430-3435.   doi: 10.1210/jcem.86.7.7621
[17] Rothenberg SM, McFadden DG, Palmer EL, et al.  Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib[J]. Clin Cancer Res, 2015, 21(5): 1028-1035.   doi: 10.1158/1078-0432.CCR-14-2915
[18] Cheng WW, Liu RY, Zhu GW, et al.  Robust thyroid gene expression and radioiodine uptake induced by simultaneous suppression of BRAF V600E and histone deacetylase in thyroid cancer cells[J]. J Clin Endocrinol Metab, 2016, 101(3): 962-971.   doi: 10.1210/jc.2015-3433
[19]

Fu H, Cheng LX, Jin YC, et al. MAPK inhibitors enhance HDAC inhibitor-induced redifferentiation in papillary thyroid cancer cells harboring BRAFV600E: an in vitro study[J/OL]. Mol Ther Oncolytics, 2019, 12: 235−245[2021-03-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389779. DOI: 10.1016/j.omto.2019.01.007.

[20] Hou P, Bojdani E, Xing MZ.  Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways[J]. J Clin Endocrinol Metab, 2010, 95(2): 820-828.   doi: 10.1210/jc.2009-1888
[21] Ferretti E, Tosi E, Po A, et al.  Notch signaling is involved in expression of thyrocyte differentiation markers and is down-regulated in thyroid tumors[J]. J Clin Endocrinol Metab, 2008, 93(10): 4080-4087.   doi: 10.1210/jc.2008-0528
[22] Yu XM, Jaskula-Sztul R, Ahmed K, et al.  Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth[J]. Mol Cancer Ther, 2013, 12(7): 1276-1287.   doi: 10.1158/1535-7163.MCT-12-0841
[23] Somnay YR, Yu XM, Lloyd RV, et al.  Notch3 expression correlates with thyroid cancer differentiation, induces apoptosis, and predicts disease prognosis[J]. Cancer, 2017, 123(5): 769-782.   doi: 10.1002/cncr.30403
[24]

Lopez-Campistrous A, Adewuyi EE, Benesch MMG, et al. PDGFRα regulates follicular cell differentiation driving treatment resistance and disease recurrence in papillary thyroid cancer[J/OL]. eBioMedicine, 2016, 12: 86−97[2021-03-24]. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(16)30414-5/fulltext. DOI: 10.1016/j.ebiom.2016.09.007.

[25] Fröhlich E, Wahl R.  The current role of targeted therapies to induce radioiodine uptake in thyroid cancer[J]. Cancer Treat Rev, 2014, 40(5): 665-674.   doi: 10.1016/j.ctrv.2014.01.002
[26] Park JW, Zarnegar R, Kanauchi H, et al.  Troglitazone, the peroxisome proliferator-activated receptor-γ agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines[J]. Thyroid, 2005, 15(3): 222-231.   doi: 10.1089/thy.2005.15.222
[27] Bauriaud-Mallet M, Vija-Racaru L, Brillouet S, et al.  The cholesterol-derived metabolite dendrogenin A functionally reprograms breast adenocarcinoma and undifferentiated thyroid cancer cells[J]. J Steroid Biochem Mol Biol, 2019, 192: 105390-.   doi: 10.1016/j.jsbmb.2019.105390
[28] Singh TD, Song J, Kim J, et al.  A novel orally active inverse agonist of estrogen-related receptor gamma (ERRγ), DN200434, a booster of NIS in anaplastic thyroid cancer[J]. Clin Cancer Res, 2019, 25(16): 5069-5081.   doi: 10.1158/1078-0432.CCR-18-3007
[29]

Hou SS, Xie XR, Zhao J, et al. Downregulation of miR-146b-3p inhibits proliferation and migration and modulates the expression and location of sodium/iodide symporter in dedifferentiated thyroid cancer by potentially targeting MUC20[J/OL]. Front Oncol, 2021, 10: 566365[2021-03-24]. https://www.frontiersin.org/articles/10.3389/fonc.2020.566365/full. DOI: 10.3389/fonc.2020.566365.

[30] Wapnir IL, van de Rijn M, Nowels K, et al.  Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections[J]. J Clin Endocrinol Metab, 2003, 88(4): 1880-1888.   doi: 10.1210/jc.2002-021544
[31] Weiss SJ, Philp NJ, Ambesi-Impiombato FS, et al.  Thyrotropin-stimulated iodide transport mediated by adenosine 3', 5'-monophosphate and dependent on protein synthesis[J]. Endocrinology, 1984, 114(4): 1099-1107.   doi: 10.1210/endo-114-4-1099
[32] Haugen BR.  2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: what is new and what has changed?[J]. Cancer, 2017, 123(3): 372-381.   doi: 10.1002/cncr.30360
[33] Leenhardt L, Leboulleux S, Bournaud C, et al.  Recombinant thyrotropin vs levothyroxine withdrawal in 131I therapy of N1 thyroid cancer: a large matched cohort study (ThyrNod)[J]. J Clin Endocrinol Metab, 2019, 104(4): 1020-1028.   doi: 10.1210/jc.2018-01589
[34] Zaballos MA, Garcia B, Santisteban P.  Gβγ dimers released in response to thyrotropin activate phosphoinositide 3-kinase and regulate gene expression in thyroid cells[J]. Mol Endocrinol, 2008, 22(5): 1183-1199.   doi: 10.1210/me.2007-0093
[35] Modoni S, Landriscina M, Fabiano A, et al.  Reinduction of cell differentiation and 131I uptake in a poorly differentiated thyroid tumor in response to the reverse transcriptase (RT) inhibitor nevirapine[J]. Cancer Biother Radiopharm, 2007, 22(2): 289-295.   doi: 10.1089/cbr.2006.316
[36]

Shang HX, Zhao JY, Yao JM, et al. Nevirapine increases sodium/iodide symporter-mediated radioiodide uptake by activation of TSHR/cAMP/CREB/PAX8 signaling pathway in dedifferentiated thyroid cancer[J/OL]. Front Oncol, 2020, 10: 404[2021-03-24]. https://www.frontiersin.org/articles/10.3389/fonc.2020.00404/full. DOI: 10.3389/fonc.2020.00404.

[37] Sáez C, Martínez-Brocca MA, Castilla C, et al.  Prognostic significance of human pituitary tumor-transforming gene immunohistochemical expression in differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2006, 91(4): 1404-1409.   doi: 10.1210/jc.2005-2532
[38] Smith VE, Sharma N, Watkins RJ, et al.  Manipulation of PBF/PTTG1IP phosphorylation status; a potential new therapeutic strategy for improving radioiodine uptake in thyroid and other tumors[J]. J Clin Endocrinol Metab, 2013, 98(7): 2876-2886.   doi: 10.1210/jc.2012-3640
[39] Amit M, Na'ara S, Francis D, et al.  Post-translational regulation of radioactive iodine therapy response in papillary thyroid carcinoma[J]. J Natl Cancer Inst, 2017, 109(12): djx092-.   doi: 10.1093/jnci/djx092
[40] Kumar SB, Kamal R, Khan A, et al.  Dose optimization of lithium to increase the uptake and retention of I-131 in rat thyroid[J]. Radiat Environ Biophys, 2019, 58(2): 257-262.   doi: 10.1007/s00411-019-00783-4
[41] Liu YY, Van Der Pluijm G, Karperien M, et al.  Lithium as adjuvant to radioiodine therapy in differentiated thyroid carcinoma: clinical and in vitro studies[J]. Clin Endocrinol (Oxf), 2006, 64(6): 617-624.   doi: 10.1111/j.1365-2265.2006.02515.x
[42] Robb R, Yang LL, Shen CX, et al.  Inhibiting BRAF oncogene-mediated radioresistance effectively radiosensitizes BRAFV600E-mutant thyroid cancer cells by constraining DNA double-strand break repair[J]. Clin Cancer Res, 2019, 25(15): 4749-4760.   doi: 10.1158/1078-0432.CCR-18-3625
[43] Groselj B, Sharma NL, Hamdy FC, et al.  Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair[J]. Br J Cancer, 2013, 108(4): 748-754.   doi: 10.1038/bjc.2013.21
[44] Perona M, Thomasz L, Rossich L, et al.  Radiosensitivity enhancement of human thyroid carcinoma cells by the inhibitors of histone deacetylase sodium butyrate and valproic acid[J]. Mol Cell Endocrinol, 2018, 478: 141-150.   doi: 10.1016/j.mce.2018.08.007
[45] Fortunati N, Catalano MG, Arena K, et al.  Valproic acid induces the expression of the Na+/I symporter and iodine uptake in poorly differentiated thyroid cancer cells[J]. J Clin Endocrinol Metab, 2004, 89(2): 1006-1009.   doi: 10.1210/jc.2003-031407
[46]

Mojsak MN, Rogowski F. The usefulness of nicotinamide in radioiodine therapy in patients with toxic and nontoxic large goitres[J/OL]. Pol Merkur Lekarski, 2010, 29(169): 54−57[2021-03-24]. https://www.pubfacts.com/detail/20712251/The-usefulness-of-nicotinamide-in-radioiodine-therapy-in-patients-with-toxic-and-nontoxic-large-goit.

[47] 赵永强, 田德增, 魏晓华, 等.  姜黄素增强人乳头瘤状甲状腺癌细胞TP C-1放射敏感性的研究[J]. 中华放射肿瘤学杂志, 2016, 25(8): 886-890.   doi: 10.3760/cma.j.issn.1004-4221.2016.08.021
Zhao YQ, Tian DZ, Wei XH, et al.  Curcumin enhances the radiosensitivity of thyroid cancer cells TPC-1[J]. Chin J Radiat Oncol, 2016, 25(8): 886-890.   doi: 10.3760/cma.j.issn.1004-4221.2016.08.021
[48] 闯振蕾, 王玉君, 余红波, 等.  131I标记槲皮素对未分化型甲状腺癌的辐射增敏作用[J]. 中国老年学杂志, 2017, 37(5): 1052-1054.   doi: 10.3969/j.issn.1005-9202.2017.05.005
Chuang ZL, Wang YJ, Yu HB, et al.  Radiation sensitizing effect of 131I-labeled quercetin in undifferentiated thyroid cancer[J]. Chin J Gerontol, 2017, 37(5): 1052-1054.   doi: 10.3969/j.issn.1005-9202.2017.05.005
[49] Gonçalves CFL, Hecht F, Cazarin J, et al.  The flavonoid quercetin reduces cell migration and increases NIS and E-cadherin mRNA in the human thyroid cancer cell line BCPAP[J]. Mol Cell Endocrinol, 2021, 529: 111266-.   doi: 10.1016/j.mce.2021.111266
[50] Dunn LA, Sherman EJ, Baxi SS, et al.  Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428.   doi: 10.1210/jc.2018-01478
[51] Nervo A, Ragni A, Piovesan A, et al.  Quality of life during treatment with lenvatinib for thyroid cancer: the patients' perspective beyond the medical evaluation[J]. Eur Thyroid J, 2021, 10(1): 65-71.   doi: 10.1159/000508186
[52] Verburg FA, Amthauer H, Binse I, et al.  Questions and controversies in the clinical application of tyrosine kinase inhibitors to treat patients with radioiodine-refractory differentiated thyroid carcinoma: expert perspectives[J]. Horm Metab Res, 2021, 53(3): 149-160.   doi: 10.1055/a-1380-4154
[53] Ho AL, Grewal RK, Leboeuf R, et al.  Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7): 623-632.   doi: 10.1056/NEJMoa1209288
[54] Jaber T, Waguespack SG, Cabanillas ME, et al.  Targeted therapy in advanced thyroid cancer to resensitize tumors to radioactive iodine[J]. J Clin Endocrinol Metab, 2018, 103(10): 3698-3705.   doi: 10.1210/jc.2018-00612
[55] Sherman EJ, Su YB, Lyall A, et al.  Evaluation of romidepsin for clinical activity and radioactive iodine reuptake in radioactive iodine-refractory thyroid carcinoma[J]. Thyroid, 2013, 23(5): 593-599.   doi: 10.1089/thy.2012.0393