[1] Bragazzi NL, Zhong W, Shu JX, et al.  Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017[J]. Eur J Prev Cardiol, 2021, 28(15): 1682-1690.   doi: 10.1093/eurjpc/zwaa147
[2]

Qu Y, Peleg AY, McGiffin D. Ventricular assist device-specific infections[J/OL]. J Clin Med, 2021, 10(3): 453[2022-04-19]. https://www.mdpi.com/2077-0383/10/3/453. DOI: 10.3390/jcm10030453.

[3] Goldstein DJ, Meyns B, Xie RB, et al.  Third annual report from the ISHLT mechanically assisted circulatory support registry: a comparison of centrifugal and axial continuous-flow left ventricular assist devices[J]. J Heart Lung Transplant, 2019, 38(4): 352-363.   doi: 10.1016/j.healun.2019.02.004
[4] Teoh TK, Hannan MM.  Ventricular assist device-associated infection[J]. Infect Dis Clin North Am, 2018, 32(4): 827-841.   doi: 10.1016/j.idc.2018.07.001
[5] Habib G, Lancellotti P, Antunes MJ, et al.  2015 ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM)[J]. Eur Heart J, 2015, 36(44): 3075-3128.   doi: 10.1093/eurheartj/ehv319
[6] Kormos RL, Cowger J, Pagani FD, et al.  The society of thoracic surgeons intermacs database annual report: evolving indications, outcomes, and scientific partnerships[J]. J Heart Lung Transplant, 2019, 38(2): 114-126.   doi: 10.1016/j.healun.2018.11.013
[7] Hannan MM, Xie RB, Cowger J, et al.  Epidemiology of infection in mechanical circulatory support: a global analysis from the ISHLT mechanically assisted circulatory support registry[J]. J Heart Lung Transplant, 2019, 38(4): 364-373.   doi: 10.1016/j.healun.2019.01.007
[8] Chahal D, Sepehry AA, Nazzari H, et al.  The impact of left ventricular assist device infections on postcardiac transplant outcomes: a systematic review and meta-analysis[J]. ASAIO J, 2019, 65(8): 827-836.   doi: 10.1097/MAT.0000000000000921
[9] Aburjania N, Hay CM, Sohail MR.  Continuous-flow left ventricular assist device systems infections: current outcomes and management strategies[J]. Ann Cardiothorac Surg, 2021, 10(2): 233-239.   doi: 10.21037/acs-2020-cfmcs-26
[10] Zierer A, Melby SJ, Voeller RK, et al.  Late-onset driveline infections: the Achilles' heel of prolonged left ventricular assist device support[J]. Ann Thorac Surg, 2007, 84(2): 515-520.   doi: 10.1016/j.athoracsur.2007.03.085
[11] Tattevin P, Flécher E, Auffret V, et al.  Risk factors and prognostic impact of left ventricular assist device–associated infections[J]. Am Heart J, 2019, 214: 69-76.   doi: 10.1016/j.ahj.2019.04.021
[12]

Martineau P, Grégoire J, Harel F, et al. Assessing cardiovascular infection and inflammation with FDG-PET[J/OL]. Am J Nucl Med Mol Imaging, 2021, 11(1): 46−58[2022-04-19]. https://pubmed.ncbi.nlm.nih.gov/33688455.

[13] Legallois D, Manrique A.  Diagnosis of infection in patients with left ventricular assist device: PET or SPECT?[J]. J Nucl Cardiol, 2019, 26(1): 56-58.   doi: 10.1007/s12350-018-1324-6
[14] Akin S, Muslem R, Constantinescu AA, et al.  18F-FDG PET/CT in the diagnosis and management of continuous flow left ventricular assist device infections: a case series and review of the literature[J]. ASAIO J, 2018, 64(2): e11-e19.   doi: 10.1097/MAT.0000000000000552
[15] ten Hove D, Treglia G, Slart RHJA, et al.  The value of 18F-FDG PET/CT for the diagnosis of device-related infections in patients with a left ventricular assist device: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(1): 241-253.   doi: 10.1007/s00259-020-04930-8
[16] de Vaugelade C, Mesguich C, Nubret K, et al.  Infections in patients using ventricular-assist devices: comparison of the diagnostic performance of 18F-FDG PET/CT scan and leucocyte-labeled scintigraphy[J]. J Nucl Cardiol, 2019, 26(1): 42-55.   doi: 10.1007/s12350-018-1323-7
[17] Dell'Aquila AM, Sindermann JR.  18F-FDG positron emission tomography/computed tomography for diagnosis of pump housing infections in patients on left ventricular assist devices: should we contain our initial enthusiasm?[J]. Eur J Cardiothorac Surg, 2018, 53(4): 892-896.   doi: 10.1093/ejcts/ezx445
[18] Kanapinn P, Burchert W, Körperich H, et al.  18F-FDG PET/CT imaging of left ventricular assist device infection: a retrospective quantitative intrapatient analysis[J]. J Nucl Cardiol, 2019, 26(4): 1212-1221.   doi: 10.1007/s12350-017-1161-z
[19] Avramovic N, Dell'Aquila AM, Weckesser M, et al.  Metabolic volume performs better than SUVmax in the detection of left ventricular assist device driveline infection[J]. Eur J Nucl Med Mol Imaging, 2017, 44(11): 1870-1877.   doi: 10.1007/s00259-017-3732-2
[20] Kim J, Feller ED, Chen W, et al.  FDG PET/CT for early detection and localization of left ventricular assist device infection: impact on patient management and outcome[J]. JACC Cardiovasc Imaging, 2019, 12(4): 722-729.   doi: 10.1016/j.jcmg.2018.01.024
[21] Bernhardt AM, Pamirsad MA, Brand C, et al.  The value of fluorine-18 deoxyglucose positron emission tomography scans in patients with ventricular assist device specific infections[J]. Eur J Cardiothorac Surg, 2017, 51(6): 1072-1077.   doi: 10.1093/ejcts/ezx016
[22] Dell'Aquila AM, Avramovic N, Mastrobuoni S, et al.  Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography for improving diagnosis of infection in patients on CF-LVAD: longing for more 'insights'[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(5): 532-543.   doi: 10.1093/ehjci/jex158
[23] Juneau D, Golfam M, Hazra S, et al.  Positron emission tomography and single-photon emission computed tomography imaging in the diagnosis of cardiac implantable electronic device infection: a systematic review and meta-analysis[J]. Circ Cardiovasc Imaging, 2017, 10(4): e005772-.   doi: 10.1161/CIRCIMAGING.116.005772
[24] Dell'Aquila AM, Mastrobuoni S, Alles S, et al.  Contributory role of fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow left ventricular assist device[J]. Ann Thorac Surg, 2016, 101(1): 87-94.   doi: 10.1016/j.athoracsur.2015.06.066
[25] Tam MC, Patel VN, Weinberg RL, et al.  Diagnostic accuracy of FDG PET/CT in suspected LVAD infections: a case series, systematic review, and meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1191-1202.   doi: 10.1016/j.jcmg.2019.04.024
[26]

Friedman SN, Mahmood M, Geske JR, et al. Positron emission tomography objective parameters for assessment of left ventricular assist device infection using 18F-FDG PET/CT[J/OL]. Am J Nucl Med Mol Imaging, 2020, 10(6): 301−311[2022-04-19]. https://pubmed.ncbi.nlm.nih.gov/33329932.

[27] Sommerlath Sohns JM, Kröhn H, Schöde A, et al.  18F-FDG PET/CT in left-ventricular assist device infection: initial results supporting the usefulness of image-guided therapy[J]. J Nucl Med, 2020, 61(7): 971-976.   doi: 10.2967/jnumed.119.237628
[28] Chen W, Dilsizian V.  Diagnosis and image-guided therapy of cardiac left ventricular assist device infections[J]. Semin Nucl Med, 2021, 51(4): 357-363.   doi: 10.1053/j.semnuclmed.2020.11.002
[29] Filsoufi F, Castillo JG, Rahmanian PB, et al.  Epidemiology of deep sternal wound infection in cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2009, 23(4): 488-494.   doi: 10.1053/j.jvca.2009.02.007
[30] Zhang RF, Feng ZH, Zhang Y, et al.  Diagnostic value of fluorine-18 deoxyglucose positron emission tomography/computed tomography in deep sternal wound infection[J]. J Plast Reconstr Aesthet Surg, 2018, 71(12): 1768-1776.   doi: 10.1016/j.bjps.2018.07.017
[31] Liu SW, Zhang J, Yin HY, et al.  The value of 18F-FDG PET/CT in diagnosing and localising deep sternal wound infection to guide surgical debridement[J]. Int Wound J, 2020, 17(4): 1019-1027.   doi: 10.1111/iwj.13368