[1] Koczorowska MM, Tholen S, Bucher F, et al.  Fibroblast activation protein-α, a stromal cell surface protease, shapes key features of cancer associated fibroblasts through proteome and degradome alterations[J]. Mol Oncol, 2016, 10(1): 40-58.   doi: 10.1016/j.molonc.2015.08.001
[2] Yamashita M, Ogawa T, Zhang XH, et al.  Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome[J]. Breast Cancer, 2012, 19(2): 170-176.   doi: 10.1007/s12282-010-0234-5
[3]

Wang WQ, Liu L, Xu HX, et al. Intratumoral α-SMA enhances the prognostic potency of CD34 associated with maintenance of microvessel integrity in hepatocellular carcinoma and pancreatic cancer[J/OL]. PLoS One, 2013, 8(8): e71189[2021-12-16]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071189. DOI: 10.1371/journal.pone.0071189.

[4] Kadel D, Zhang Y, Sun HR, et al.  Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy[J]. Cell Biol Toxicol, 2019, 35(5): 407-421.   doi: 10.1007/s10565-019-09461-z
[5] Park JE, Lenter MC, Zimmermann RN, et al.  Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts[J]. J Biol Chem, 1999, 274(51): 36505-36512.   doi: 10.1074/jbc.274.51.36505
[6] Tang HJ, Chu YJ, Huang ZJ, et al.  The metastatic phenotype shift toward myofibroblast of adipose-derived mesenchymal stem cells promotes ovarian cancer progression[J]. Carcinogenesis, 2020, 41(2): 182-193.   doi: 10.1093/carcin/bgz083
[7] Rettig WJ, Garin-Chesa P, Healey JH, et al.  Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin[J]. Cancer Res, 1993, 53(14): 3327-3335.
[8] Lindner T, Loktev A, Altmann A, et al.  Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein[J]. J Nucl Med, 2018, 59(9): 1415-1422.   doi: 10.2967/jnumed.118.210443
[9] Giesel FL, Kratochwil C, Lindner T, et al.  68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers[J]. J Nucl Med, 2019, 60(3): 386-392.   doi: 10.2967/jnumed.118.215913
[10] Loktev A, Lindner T, Mier W, et al.  A tumor-imaging method targeting cancer-associated fibroblasts[J]. J Nucl Med, 2018, 59(9): 1423-1429.   doi: 10.2967/jnumed.118.210435
[11] Loktev A, Lindner T, Burger EM, et al.  Development of fibroblast activation protein-targeted radiotracers with improved tumor retention[J]. J Nucl Med, 2019, 60(10): 1421-1429.   doi: 10.2967/jnumed.118.224469
[12]

Zhao L, Chen JH, Pang YZ, et al. Fibroblast activation protein-based theranostics in cancer research: a state-of-the-art review[J/OL]. Theranostics, 2022, 12(4): 1557−1569[2021-12-16]. https://www.thno.org/v12p1557.htm. DOI: 10.7150/thno.69475.

[13] Chen HJ, Pang YZ, Wu JX, et al.  Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer[J]. Eur J Nucl Med Mol Imaging, 2020, 47(8): 1820-1832.   doi: 10.1007/s00259-020-04769-z
[14] 孙春锋, 谭忠华, 高艳, 等.  结直肠癌腹膜转移的18F-FDG PET/CT影像学表现及其临床意义[J]. 中华核医学与分子影像杂志, 2019, 39(11): 653-656.   doi: 10.3760/cma.j.issn.2095-2848.2019.11.003
Sun CF, Tan ZH, Gao Y, et al.  18F-FDG PET/CT imaging manifestations of peritoneal carcinomatosis from colorectal cancer and its clinical significance[J]. Chin J Nucl Med Mol Imaging, 2019, 39(11): 653-656.   doi: 10.3760/cma.j.issn.2095-2848.2019.11.003
[15] 龙亚丽, 何巧, 张冰, 等.  13N-NH311C-MET及18F-FDG PET/CT显像在脑胶质瘤诊断与评估中的对比研究[J]. 中华核医学与分子影像杂志, 2020, 40(3): 159-165.   doi: 10.3760/cma.j.cn321828-201909026-01328
Long YL, He Q, Zhang B, et al.  Comparison of 13N-NH3, 11C-MET and 18F-FDG PET/CT imaging in the diagnosis and evaluation of cerebral glioma[J]. Chin J Nucl Med Mol Imaging, 2020, 40(3): 159-165.   doi: 10.3760/cma.j.cn321828-201909026-01328
[16] Sollini M, Kirienko M, Gelardi F, et al.  State-of-the-art of FAPI-PET imaging: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4396-4414.   doi: 10.1007/s00259-021-05475-0
[17] Ballal S, Yadav MP, Moon ES, et al.  Biodistribution, pharmacokinetics, dosimetry of [68Ga]Ga-DOTA. SA. FAPi, and the head-to-head comparison with [18F]F-FDG PET/CT in patients with various cancers[J]. Eur J Nucl Med Mol Imaging, 2021, 48(6): 1915-1931.   doi: 10.1007/s00259-020-05132-y
[18] Qin CX, Liu F, Huang J, et al.  A head-to-head comparison of 68Ga-DOTA-FAPI-04 and 18F-FDG PET/MR in patients with nasopharyngeal carcinoma: a prospective study[J]. Eur J Nucl Med Mol Imaging, 2021, 48(10): 3228-3237.   doi: 10.1007/s00259-021-05255-w
[19] Zhao L, Pang YZ, Zheng H, et al.  Clinical utility of [68Ga]Ga-labeled fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography for primary staging and recurrence detection in nasopharyngeal carcinoma[J]. Eur J Nucl Med Mol Imaging, 2021, 48(11): 3606-3617.   doi: 10.1007/s00259-021-05336-w
[20] Shi XM, Xing HQ, Yang XB, et al.  Comparison of PET imaging of activated fibroblasts and 18F-FDG for diagnosis of primary hepatic tumours: a prospective pilot study[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1593-1603.   doi: 10.1007/s00259-020-05070-9
[21] Röhrich M, Naumann P, Giesel FL, et al.  Impact of 68Ga-FAPI PET/CT imaging on the therapeutic management of primary and recurrent pancreatic ductal adenocarcinomas[J]. J Nucl Med, 2021, 62(6): 779-786.   doi: 10.2967/jnumed.120.253062
[22] Qin CX, Shao FQ, Gai YK, et al.  68Ga-DOTA-FAPI-04 PET/MR in the evaluation of gastric carcinomas: comparison with 18F-FDG PET/CT[J]. J Nucl Med, 2022, 63(1): 81-88.   doi: 10.2967/jnumed.120.258467
[23] Jin X, Wei MM, Wang SL, et al.  Detecting fibroblast activation proteins in lymphoma using 68Ga-FAPI PET/CT[J]. J Nucl Med, 2022, 63(2): 212-217.   doi: 10.2967/jnumed.121.262134
[24] Kesch C, Yirga L, Dendl K, et al.  High fibroblast-activation-protein expression in castration-resistant prostate cancer supports the use of FAPI-molecular theranostics[J]. Eur J Nucl Med Mol Imaging, 2021, 49(1): 385-389.   doi: 10.1007/s00259-021-05423-y
[25] Giesel FL, Adeberg S, Syed M, et al.  FAPI-74 PET/CT using either 18F-AlF or cold-kit 68Ga labeling: biodistribution, radiation dosimetry, and tumor delineation in lung cancer patients[J]. J Nucl Med, 2021, 62(2): 201-207.   doi: 10.2967/jnumed.120.245084
[26] Lindner T, Altmann A, Krämer S, et al.  Design and development of 99mTc-labeled FAPI tracers for SPECT imaging and 188Re therapy[J]. J Nucl Med, 2020, 61(10): 1507-1513.   doi: 10.2967/jnumed.119.239731
[27] Schmidkonz C, Rauber S, Atzinger A, et al.  Disentangling inflammatory from fibrotic disease activity by fibroblast activation protein imaging[J]. Ann Rheum Dis, 2020, 79(11): 1485-1491.   doi: 10.1136/annrheumdis-2020-217408
[28] Zhang X, Song WY, Qin CX, et al.  Non-malignant findings of focal 68Ga-FAPI-04 uptake in pancreas[J]. Eur J Nucl Med Mol Imaging, 2021, 48(8): 2635-2641.   doi: 10.1007/s00259-021-05194-6
[29] Röhrich M, Leitz D, Glatting FM, et al.  Fibroblast activation protein-specific PET/CT imaging in fibrotic interstitial lung diseases and lung cancer: a translational exploratory study[J]. J Nucl Med, 2022, 63(1): 127-133.   doi: 10.2967/jnumed.121.261925
[30] Wu MQ, Ning J, Li JL, et al.  Feasibility of in vivo imaging of fibroblast activation protein in human arterial walls[J]. J Nucl Med, 2022, 63(6): 948-951.   doi: 10.2967/jnumed.121.262863
[31] Koerber SA, Staudinger F, Kratochwil C, et al.  The role of 68Ga-FAPI PET/CT for patients with malignancies of the lower gastrointestinal tract: first clinical experience[J]. J Nucl Med, 2020, 61(9): 1331-1336.   doi: 10.2967/jnumed.119.237016
[32] Syed M, Flechsig P, Liermann J, et al.  Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers[J]. Eur J Nucl Med Mol Imaging, 2020, 47(12): 2836-2845.   doi: 10.1007/s00259-020-04859-y
[33] Windisch P, Rohrich M, Regnery S, et al.  Fibroblast activation protein (FAP) specific PET for advanced target volume delineation in glioblastoma[J]. Radiother Oncol, 2020, 150: 159-163.   doi: 10.1016/j.radonc.2020.06.040
[34] Zhao L, Chen SY, Chen SJ, et al.  68Ga-fibroblast activation protein inhibitor PET/CT on gross tumour volume delineation for radiotherapy planning of oesophageal cancer[J]. Radiother Oncol, 2021, 158: 55-61.   doi: 10.1016/j.radonc.2021.02.015
[35] Schöder H.  2021 SNMMI highlights lecture: oncology and therapy, part 1[J]. J Nucl Med, 2021, 62(10): 9N-15N.
[36] Watabe T, Liu YW, Kaneda-Nakashima K, et al.  Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu- and 225Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models[J]. J Nucl Med, 2020, 61(4): 563-569.   doi: 10.2967/jnumed.119.233122
[37] Zhao L, Niu B, Fang JY, et al.  Synthesis, preclinical evaluation, and a pilot clinical PET imaging study of 68Ga-labeled FAPI dimer[J]. J Nucl Med, 2022, 63(6): 862-868.   doi: 10.2967/jnumed.121.263016
[38] Xu MX, Zhang P, Ding J, et al.  Albumin binder-conjugated fibroblast activation protein inhibitor radiopharmaceuticals for cancer therapy[J]. J Nucl Med, 2022, 63(6): 952-958.   doi: 10.2967/jnumed.121.262533
[39] Ballal S, Yadav MP, Kramer V, et al.  A theranostic approach of [68Ga]Ga-DOTA. SA. FAPi PET/CT-guided [177Lu]Lu-DOTA. SA. FAPi radionuclide therapy in an end-stage breast cancer patient: new frontier in targeted radionuclide therapy[J]. Eur J Nucl Med Mol Imaging, 2021, 48(3): 942-944.   doi: 10.1007/s00259-020-04990-w
[40] Rathke H, Fuxius S, Giesel FL, et al.  Two tumors, one target: preliminary experience with 90Y-FAPI therapy in a patient with metastasized breast and colorectal cancer[J]. Clin Nucl Med, 2021, 46(10): 842-844.   doi: 10.1097/RLU.0000000000003842
[41] Kratochwil C, Giesel FL, Rathke H, et al.  [153Sm]Samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma[J]. Eur J Nucl Med Mol Imaging, 2021, 48(9): 3011-3013.   doi: 10.1007/s00259-021-05273-8
[42] Kuyumcu S, Kovan B, Sanli Y, et al.  Safety of fibroblast activation protein-targeted radionuclide therapy by a low-dose dosimetric approach using 177Lu-FAPI04[J]. Clin Nucl Med, 2021, 46(8): 641-646.   doi: 10.1097/RLU.0000000000003667
[43] Assadi M, Rekabpour SJ, Jafari E, et al.  Feasibility and therapeutic potential of 177Lu-fibroblast activation protein inhibitor-46 for patients with relapsed or refractory cancers: a preliminary study[J]. Clin Nucl Med, 2021, 46(11): e523-e530.   doi: 10.1097/RLU.0000000000003810
[44] Baum RP, Schuchardt C, Singh A, et al.  Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: first-in-humans results[J]. J Nucl Med, 2022, 63(3): 415-423.   doi: 10.2967/jnumed.120.259192
[45] Ferdinandus J, Fragoso Costa P, Kessler L, et al.  Initial clinical experience with 90Y-FAPI-46 radioligand therapy for advanced-stage solid tumors: a case series of 9 patients[J]. J Nucl Med, 2022, 63(5): 727-734.   doi: 10.2967/jnumed.121.262468
[46] Feig C, Jones JO, Kraman M, et al.  Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20212-20217.   doi: 10.1073/pnas.1320318110