[1] Intra J, Salem AK.  Fabrication, characterization and in vitro evaluation of poly(D, L-lactide-co-glycolide)microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery[J]. J Pharm Sci, 2010, 99(1): 368-384.   doi: 10.1002/jps.21840
[2] Koning GA, Krijger GC.  Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery[J]. Anticancer Agents Med Chem, 2007, 7(4): 425-440.   doi: 10.2174/187152007781058613
[3] Sawant RR, Torchilin VP.  Polymeric micelles: polyethylene glycolphosphatidylethanolamine(PEG-PE)-based micelles as an example[J]. Methods Mol Biol, 2010, 624: 131-149.
[4] Press OW, Rasey J.  Principles of radioimmunotherapy for hematologistsandoncologists[J]. SeminOncol, 2000, 27(6Suppl12): 62-73.
[5] Burke JM, Jurcic JG, Scheinberg DA.  Radioimmunotherapy for acute leukemia[J]. Cancer Control, 2002, 9(2): 106-113.   doi: 10.1177/107327480200900203
[6] Mulford DA, Scheinberg DA, Jurcic JG.  The promise of targeted {alpha}-particle therapy[J]. J Nucl Med, 2005, 46(Suppl 1): 199S-204S.
[7] Lin A, Chen J, Liu Y, et al.  Preparation and evaluation of N-caproyl chitosan nanoparticles surface modified with glycyrrhizin for hepatocyte targeting[J]. Drug Dev Ind Pharm, 2009, 35(11): 1348-1355.   doi: 10.3109/03639040902939197
[8] Li KC, Guccione S, Bednarski MD.  Combined vascular targeted imaging and therapy: a paradigm for personalized treatment[J]. J Cell Biochem Suppl, 2002, 39: 65-71.
[9] Häfeli UO, Sweeney SM, Beresford BA, et al.  Magnetically directed poly(lactic acid) 90Y-microspheres: novel agents for targeted intracavitary radiotherapy[J]. J Biomed Mater Res, 1994, 28(8): 901-908.   doi: 10.1002/jbm.820280809
[10] Chunfu Z, Jinquan C, Duanzhi Y, et al.  Preparation and radiolabeling of human serum albumin(HSA)-coated magnetite nanoparticles for magnetically targeted therapy[J]. Appl Radiat Isot, 2004, 61(6): 1255-1259.   doi: 10.1016/j.apradiso.2004.03.114
[11] Kobayashi H, Sato N, Saga T, et al.  Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immuno-reactivity[J]. Eur J Nucl Med, 2000, 27(9): 1334-1339.   doi: 10.1007/s002590000293
[12] Sato N, Kobayashi H, Saga T, et al.  Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice[J]. Clin Cancer Res, 2001, 7(11): 3606-3612.
[13] Presant CA, Blayney D, Proffitt RT, et al.  Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes[J]. Lancet, 1990, 335(8701): 1307-1309.   doi: 10.1016/0140-6736(90)91188-G
[14] Harrington KJ, Rowlinson-Busza G, Syrigos KN, et al.  Biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies[J]. Br J Cancer, 2000, 83(2): 232-238.   doi: 10.1054/bjoc.1999.1232
[15] Bao A, Goins B, Klipper R, et al.  A novel liposome radiolabeling method using 99mTc-"SNS/S" complexes: in vitro and in vivo evaluation[J]. J Pharm Sci, 2003, 92(9): 1893-1904.   doi: 10.1002/jps.10441
[16] Goldenberg DM.  Targeted therapy of cancer with radiolabeled antibodies[J]. J Nucl Med, 2002, 43(5): 693-713.
[17] Chen X, Park R, Shahinian AH, et al.  Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation[J]. Nucl Med Biol, 2004, 31(1): 11-19.   doi: 10.1016/j.nucmedbio.2003.07.003
[18] Line BR, Mitra A, Nan A, et al.  Targeting tumor angiogenesis: comparisonofpeptideandpolymer-peptideconjugates[J]. JNuclMed, 2005, 46(9): 1552-1560.
[19] Torchilin VP.  Polymeric contrast agents for medical imaging[J]. Curr Pharm Biotechnol, 2000, 1(2): 183-215.   doi: 10.2174/1389201003378960
[20] Torchilin VP, Lukyanov AN, Gao Z, et al.  Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs[J]. Proc Natl Acad Sci USA, 2003, 100(10): 6039-6044.   doi: 10.1073/pnas.0931428100