[1] Bunin DI, Bakke J, Green CE, et al.  Romiplostim (Nplate®) as an effective radiation countermeasure to improve survival and platelet recovery in mice[J]. Int J Radiat Biol, 2020, 96(1): 145-154.   doi: 10.1080/09553002.2019.1605465
[2] Scott LJ.  Sitagliptin: a review in type 2 diabetes[J]. Drugs, 2017, 77(2): 209-224.   doi: 10.1007/s40265-016-0686-9
[3] Rosenstock J, Allison D, Birkenfeld AL, et al.  Effect of additional oral semaglutide vs sitagliptin on glycated hemoglobin in adults with type 2 diabetes uncontrolled with metformin alone or with sulfonylurea: the PIONEER 3 randomized clinical trial[J]. JAMA, 2019, 321(15): 1466-1480.   doi: 10.1001/jama.2019.2942
[4] Zhou Y, Guo ZY, Yan WJ, et al.  Cardiovascular effects of sitagliptin — an anti-diabetes medicine[J]. Clin Exp Pharmacol Physiol, 2018, 45(7): 628-635.   doi: 10.1111/1440-1681.12953
[5]

Zhou X, Wang WM, Wang C, et al. DPP4 inhibitor attenuates severe acute pancreatitis-associated intestinal inflammation via nrf2 signaling[J/OL]. Oxid Med Cell Longev, 2019, 2019: 6181754[2020-10-20]. https://www.hindawi.com/journals/omcl/2019/6181754. DOI: 10.1155/2019/6181754.

[6] Wu Y, Xu M, Bao H, et al.  Sitagliptin inhibits EndMT in vitro and improves cardiac function of diabetic rats through the SDF-1α/PKA pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(2): 841-848.   doi: 10.26355/eurrev_201901_16899
[7] Pujadas G, De Nigris V, Prattichizzo F, et al.  The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory[J]. Endocrine, 2017, 56(3): 509-520.   doi: 10.1007/s12020-016-1052-0
[8] Esposito G, Cappetta D, Russo R, et al.  Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction[J]. Br J Pharmacol, 2017, 174(22): 4070-4086.   doi: 10.1111/bph.13686
[9]

Abdel-Gaber SA, Geddawy A, Moussa RA. The hepatoprotective effect of sitagliptin against hepatic ischemia reperfusion-induced injury in rats involves Nrf-2/HO-1 pathway[J/OL]. Pharmacol Rep, 2019, 71(6): 1044−1049[2020-10-20]. https://www.sciencedirect.com/science/article/abs/pii/S173411401930194X. DOI: 10.1016/j.pharep.2019.06.006.

[10] Broxmeyer HE, Hoggatt J, O'Leary HA, et al.  Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis[J]. Nat Med, 2012, 18(12): 1786-1796.   doi: 10.1038/nm.2991
[11] 任岩松, 沈舜义.  老药新用在新药研发中的意义[J]. 世界临床药物, 2013, 34(11): 687-692.
Ren YS, Shen SY.  New indication of existing drugs and its significance in drug discovery[J]. World Clin Drugs, 2013, 34(11): 687-692.
[12]

He YH, Yang GD, Yao F, et al. Sitagliptin inhibits vascular inflammation via the SIRT6-dependent signaling pathway[J/OL]. Int Immunopharmacol, 2019, 75: 105805[2020-10-20]. https://www.sciencedirect.com/science/article/pii/S1567576919301109?via%3Dihub. DOI: 10.1016/j.intimp.2019.105805.

[13]

Sato N, Takasaka N, Yoshida M, et al. Metformin attenuates lung fibrosis development via NOX4 suppression[J/OL]. Respir Res, 2016, 17(1): 107[2020-10-20]. https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-016-0420-x. DOI: 10.1186/s12931-016-0420-x.

[14] 路璐, 李德冠, 张俊伶, 等.  不同剂量137Cs γ-射线辐射后造血干/祖细胞辐射敏感性差异研究[J]. 天津医药, 2016, 44(3): 314-317.   doi: 10.11958/20150115
Lu L, Li DG, Zhang JL, et al.  The difference in the radiosensitivity between hematopoietic stem and progenitor cells after different doses of 137Cs γ-radiation[J]. Tianjin Med J, 2016, 44(3): 314-317.   doi: 10.11958/20150115
[15]

Wang MF, Dong YP, Wu J, et al. Sitagliptin mitigates total body irradiation-induced hematopoietic injury in mice[J/OL]. Oxid Med Cell Longev, 2020, 2020: 8308616[2020-10-20]. https://www.hindawi.com/journals/omcl/2020/8308616. DOI: 10.1155/2020/8308616.

[16] 陈孟毅, 林帅, 吴丽贤, 等.  不同年龄小鼠造血系统辐射损伤与修复的比较观察[J]. 国际放射医学核医学杂志, 2019, 43(5): 442-449.   doi: 10.3760/cma.j.issn.1673-4114.2019.05.011
Chen MY, Lin S, Wu LX, et al.  Comparison of radiation damage and recovery of hematopoietic system in mice of different ages[J]. Int J Radiat Med Nucl Med, 2019, 43(5): 442-449.   doi: 10.3760/cma.j.issn.1673-4114.2019.05.011
[17] 张书琴, 崔明, 王滨, 等.  藿香正气合剂对γ射线照射小鼠的防护作用研究[J]. 国际放射医学核医学杂志, 2020, 44(3): 156-163.   doi: 10.3760/cma.j.cn121381-201912007-00004
Zhang SQ, Cui M, Wang B, et al.  Radioprotective effects of Huoxiang Zhengqi mixture on γ irradiation treated mice[J]. Int J Radiat Med Nucl Med, 2020, 44(3): 156-163.   doi: 10.3760/cma.j.cn121381-201912007-00004
[18] Akeem S, Lukman O, Eltahir K, et al.  Bone marrow and peripheral blood cells toxicity of a single 2.0 Gy Cobalt60 ionizing radiation: an animal model[J]. Ethiop J Health Sci, 2019, 29(2): 195-202.   doi: 10.4314/ejhs.v29i2.6
[19]

Liu CH, Tanaka K, Katsube T, et al. Altered response to total body irradiation of C57BL/6-Tg (CAG-EGFP) mice[J/OL]. Dose-Response, 2020, 18(3): 1559325820951332[2020-10-20]. https://journals.sagepub.com/doi/10.1177/1559325820951332. DOI: 10.1177/1559325820951332.

[20] Gault N, Verbiest T, Badie C, et al.  Hematopoietic stem and progenitor cell responses to low radiation doses—implications for leukemia risk[J]. Int J Radiat Biol, 2019, 95(7): 892-899.   doi: 10.1080/09553002.2019.1569777
[21]

Cary L, Noutai D, Salber R, et al. Bone marrow endothelial cells influence function and phenotype of hematopoietic stem and progenitor cells after mixed neutron/gamma radiation[J/OL]. Int J Mol Sci, 2019, 20(7): 1795[2020-10-20]. https://www.mdpi.com/1422-0067/20/7/1795. DOI: 10.3390/ijms20071795.