[1] 孙莹莹, 孙夕林, 王凯, 等. EGFR靶向的PET/SPECT分子成像研究进展[J].现代生物医学进展, 2014, 14(10):1980-1986.
[2]

Laskin JJ, Sandler AB. Epidermal growth factor receptor: a promising target in solid tumours[J/OL]. Cancer Treat Rev, 2004, 30(1): 1-17[2014-11-09]. http://www. sciencedirect. com/science/article/pii/S0305737203002020

[3] Eccles SA. Cell biology of lymphatic metastasis. The potential role of c-erbB oncogene signalling[J]. Recent Results Cancer Res, 2000, 157:41-54.
[4] Shepherd FA, Pereira JR, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer[J]. N Engl J Med, 2005, 353(2):123-132.  doi: 10.1056/NEJMoa050753
[5]

Madhusudan S, Ganesan TS. Tyrosine kinase inhibitors in cancer therapy[J/OL]. Clin Biochem, 2004, 37(7): 618-635[2014-11-01]. http://www.sciencedirect. com/science/article/pii/S0009912004001298.

[6]

Schiller JH. Noninvasive monitoring of tumors[J/OL]. N Engl J Med, 2008, 359(4): 418-420[2014-11-01]. http://connection. ebscohost. com/c/editorials/33291815/noninvasive-monitoring-tumors.

[7] Levitzki A. Protein kinase inhibitors as a therapeutic modality[J]. Acc Chem Res, 2003, 36(6):462-469.  doi: 10.1021/ar0201207
[8] Reilly RM, Kiarash R, Cameron RG, et al. 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR[J]. J Nucl Med, 2000, 41(3):429-438.
[9] Reilly RM, Kiarash R, Cameron RG, et al. A comparison of EGF and Mab 528 labeled with 111In for imaging human breast cancer[J]. J Nucl Med, 2000, 41(5):903-911.
[10] Jung KH, Park JW, Paik JY, et al. EGF receptor targeted tumor imaging with biotin-PEG-EGF linked to 99mTc-HYNIC labeled avidin and streptavidin[J]. Nucl Med Biol, 2012, 39(8):1122-1127.  doi: 10.1016/j.nucmedbio.2012.06.007
[11] Jung KH, Choe YS, Paik JY, et al. 99mTc-Hydrazinonicotinamide epidermal growth factor-polyethylene glycol-quantum dot imaging allows quantification of breast cancer epidermal growth factor receptor expression and monitors receptor downregulation in response to cetuximab therapy[J]. J Nucl Med, 2011, 52(9):1457-1464.  doi: 10.2967/jnumed.111.087619
[12] 戴春岭, 符立梧.靶点药物Cetuximab(C225)研究新进展[J].生物化学与生物物理进展, 2007, 34(3):246-254.  doi: 10.3321/j.issn:1000-3282.2007.03.004
[13] Schechter NR, Yang DJ, Azhdarinia A, et al. Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody[J]. Anticancer Drugs, 2003, 14(1):49-56.  doi: 10.1097/00001813-200301000-00007
[14] Liu Z, Ma T, Liu H, et al. 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model[J]. Mol Pharm, 2014, 11(3):800-807.  doi: 10.1021/mp4005047
[15] Xu N, Cai G, Ye W, et al. Molecular imaging application of radioiodinated anti-EGFR human Fab to EGFR-overexpressing tumor xenografts[J]. Anticancer Res, 2009, 29(10):4005-4011.
[16] Wang X, Zhu J, Zhao P, et al. In vitro efficacy of immuno-chemotherapy with anti-EGFR human fab-taxol conjugate on A431 epidermoid carcinoma cells[J]. Cancer Biol Ther, 2007, 6(6):980-986.
[17] 董强刚, 李建璋, 黎飒, 等.上皮生长因子受体外显子21基因突变L858R的实时定量PCR检测[J].肿瘤, 2007, 27(2):150-154.
[18] Pal A, Balatoni JA, Mukhopadhyay U, et al. Radiosynthesis and initial in vitro evaluation of[18F]F-PEG6-IPQA--a novel PET radiotracer for imaging EGFR expression-activity in lung carcinomas[J]. Mol Imaging Biol, 2011, 13(5):853-861.
[19] Yeh HH, Ogawa K, Balatoni J, et al. Molecular imaging of active mutant L858R EGF receptor(EGFR)kinase-expressing nonsmall cell lung carcinomas using PET/CT[J]. Proc Natl Acad Sci USA, 2011, 108(4):1603-1608.  doi: 10.1073/pnas.1010744108
[20] Pal A, Glekas A, Doubrovin M, et al. Molecular imaging of EGFR kinase activity in tumors with 124I-labeled small molecular tracer and positron emission tomography[J]. Mol Imaging Biol, 2006, 8(5):262-277.
[21] Wong SF. Cetuximab:an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer[J]. Clin Ther, 2005, 27(6):684-694.  doi: 10.1016/j.clinthera.2005.06.003
[22] Cai W, Chen K, He L, et al. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody[J]. Eur J Nucl Med Mol Imaging, 2007, 34(6):850-858.  doi: 10.1007/s00259-006-0361-6
[23] Sadri K, Ren Q, Zhang K, et al. PET imaging of EGFR expression in nude mice bearing MDA-MB-468, a human breast adenocarcinoma[J]. Nucl Med Commun, 2011, 32(7):563-569.
[24] Eiblmaier M, Meyer LA, Watson MA, et al. Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines[J]. J Nucl Med, 2008, 49(9):1472-1479.
[25] Niu G, Sun XL, Cao QZ, et al. Cetuximab-Based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2010, 16(7):2095-2105.  doi: 10.1158/1078-0432.CCR-09-2495
[26] Perk LR, Visser GW, Vosjan MJ, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab[J]. J Nucl Med, 2005, 46(11):1898-1906.
[27] Aerts HJ, Dubois L, Perk L, et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET[J]. J Nucl Med, 2009, 50(1):123-131.
[28] Miao Z, Ren G, Liu H, et al. PET of EGFR expression with an 18F-labeled affibody molecule[J]. J Nucl Med, 2012, 53(7):1110-1118.
[29] Fredriksson A, Johnström P, Thorell JO, et al. In vivo evaluation of the biodistribution of 11C-labeled PD153035 in rats without and with neuroblastoma implants[J]. Life Sci, 1999, 65(2):165-174.
[30] Meng X, Loo BW, Ma L, et al. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI:a pilot study[J]. J Nucl Med, 2011, 52(10):1573-1579.  doi: 10.2967/jnumed.111.092874
[31] Memon AA, Jakobsen S, Dagnaes-Hansen F, et al. Positron emission tomography(PET)imaging with[11C]-labeled erlotinib:a micro-PET study on mice with lung tumor xenografts[J]. Cancer Res, 2009, 69(3):873-878.
[32] Memon AA, Weber B, Winterdahl M, et al. PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer[J]. Br J Cancer, 2011, 105(12):1850-1855.  doi: 10.1038/bjc.2011.493
[33]

Holt DP, Ravert HT, Dannals RF, et al. Synthesis of[11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography[J/OL]. J label compd Radiopharm, 2006, 49(10): 883-888[2014-11-8]. http://onlinelibrary. wiley. com/doi/10. 1002/jlcr. 1104/abstract.

[34] Zhang MR, Kumata K, Hatori A, et al.[11C]Gefitinib([11C]Iressa):radiosynthesis, in vitro uptake, and in vivo imaging of intact murine fibrosarcoma[J]. Mol Imaging Biology, 2010, 12(2):181-191.
[35]

Murali D, Flores LG. Evaluation of[F-18]iressa as a PET imaging agent for tumor overexpressing epidermal growth factor(EGFR) receptors[J/OL]. J Label Compd Radiopharm, 2005, 48(S1): S1-S341[2014-11-09]. http://onlinelibrary. wiley. com/doi/10. 1002/jlcr. v48:1%2B/issuetoc.

[36]

Seimbille Y, Phelps ME, Czernin J, et al. Fluorine-18 labeling of 6, 7-disubstituted anilinoquinazoline derivatives for positron emission tomography(PET)imaging of tyrosine kinase receptors: synthesis of 18F-Iressa and related molecular probes[J/OL]. J Label Compd Radiopharm, 2005, 48(11): 829-843[2014-11-01]. http://onlinelibrary. wiley. com/doi/10. 1002/jlcr. 998/abstract.

[37] Su H, Seimbille Y, Ferl GZ, et al. Evaluation of[18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors[J]. Eur J Nucl Med Mol Imaging, 2008, 35(6):1089-1099.  doi: 10.1007/s00259-007-0636-6
[38] Bonasera TA, Ortu G, Rozen Y, et al. Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase[J]. Nucl Med Biol, 2001, 28(4):359-374.
[39] Ortu G, Ben-David I, Rozen Y, et al. Labeled EGFr-TK irreversible inhibitor(ML03):in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug[J]. Int J Cancer, 2002, 101(4):360-370.
[40] Tsou HR, Mamuya N, Johnson BD, et al. 6-Substituted-4-(3-bromophenylamino)quinazolines as putative irreversible inhibitors of the epidermal growth factor receptor(EGFR)and human epidermal growth factor receptor(HER-2)tyrosine kinases with enhanced antitumor activity[J]. J Med Chem, 2001, 44(17):2719-2734.
[41] Mishani E, Abourbeh G, Rozen Y, et al. Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid[4-(phenylamino)-quinazoline-6-yl]-amides:potential PET bioprobes for molecular imaging of EGFR-positive tumors[J]. Nucl Med Biol, 2004, 31(4):469-476.
[42]

Dissoki S, Laky D, Mishani E, et al. Fluorine-18 labeling of ML04-presently the most promising irreversible inhibitor candidate for visulization of EGFR in cancer[J/OL]. J Label Compd Radiopharm, 2006, 49(6): 533-543[2014-11-9]. http://onlinelibrary. wiley. com/doi/10. 1002/jlcr. 1071/abstract.

[43] Abourbeh G, Dissoki S, Jacobson O, et al. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors[J]. Nucl Med Biol, 2007, 34(1):55-70.
[44] Shaul M, Abourbeh G, Jacobson O, et al. Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer[J]. Bioorg Med Chem, 2004, 12(13):3421-3429.  doi: 10.1016/j.bmc.2004.04.044
[45] Solca F, Dahl G, Zoephel A, et al. Target binding properties and cellular activity of afatinib(BIBW 2992), an irreversible ErbB family blocker[J]. J Pharmacol Exp Ther, 2012, 343(2):342-350.  doi: 10.1124/jpet.112.197756
[46] Slobbe P, Windhorst AM. Development of[18F]afatinib as a new TKI-PET tracer for EGFR positive tumors[J]. Nucl Med Biol, 2014, 41(9):749-757.
[47] Fernandes C, Oliveira C, Gano L, et al. Radioiodination of new EGFR inhibitors as potential SPECT agents for molecular imaging of breast cancer[J]. Bioorg Med Chem, 2007, 15(12):3974-3980.
[48] Neto C, Fernandes C, Oliveira MC, et al. Radiohalogenated 4-anilinoquinazoline-based EGFR-TK inhibitors as potential cancer imaging agents[J]. Nucl Med Biol, 2012, 39(2):247-260.
[49] Bourkoula A, Paravatou-Petsotas M, Papadopoulos A, et al. Synthesis and characterization of Rhenium and technetium-99m tricarbonyl complexes bearing the 4-[3-bromophenyl]quinazoline moiety as a biomarker for EGFR-TK imaging[J]. Eur J Med Chem, 2009, 44(10):4021-4027.  doi: 10.1016/j.ejmech.2009.04.033
[50] Hirata M, Kanai Y, Naka S, et al. Evaluation fo radioiodinated quinazoline derivative as a new ligand for EGF receptor tyrosine kinase activity using SPECT[J]. Ann Nucl Med, 2011, 25(2):117-124.
[51] Hirata M, Kanai Y, Naka S, et al. Synthesis and evaluation of radioiodinated phenoxyquinazoline and benzylaminoquinazoline derivatives as new EGF receptor tyrosine kinase imaging ligands for tumor diagnosis using SPECT[J]. Ann Nucl Med, 2012, 26(5):381-389.
[52] Hirata M, Kanai Y, Naka S, et al. A useful EGFR-TK ligand for tumor diagnosis with SPECT:development of radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3′-iodophenoxy)quinazoline[J]. Ann Nucl Med, 2013, 27(5):431-443.
[53] Cai W, Niu G, Chen X. Multimodality imaging of the HER-kinase axis in cancer[J]. Eur J Nucl Med Mol Imaging, 2008, 35(1):186-208.  doi: 10.1007/s00259-007-0560-9