[1] Malhi GS, Mann JJ.  Depression[J]. Lancet, 2018, 392(10161): 2299-2312.   doi: 10.1016/S0140-6736(18)31948-2
[2]

Morimoto SS, Wexler BE, Liu JC, et al. Neuroplasticity-based computerized cognitive remediation for treatment-resistant geriatric depression[J/OL]. Nat Commun, 2014, 5: 4579[2020-12-08]. https://www.nature.com/articles/ncomms5579. DOI: 10.1038/ncomms5579.

[3] Munro BA, Weyandt LL, Hall LE, et al.  Physiological substrates of executive functioning: a systematic review of the literature[J]. Atten Defic Hyperact Disord, 2018, 10(1): 1-20.   doi: 10.1007/s12402-017-0226-9
[4] Morimoto SS, Alexopoulos GS.  Cognitive deficits in geriatric depression: clinical correlates and implications for current and future treatment[J]. Psychiatr Clin North Am, 2013, 36(4): 517-531.   doi: 10.1016/j.psc.2013.08.002
[5] Epp AM, Dobson KS, Dozois DJA, et al.  A systematic meta-analysis of the Stroop task in depression[J]. Clin Psychol Rev, 2012, 32(4): 316-328.   doi: 10.1016/j.cpr.2012.02.005
[6] Elgamal S, McKinnon MC, Ramakrishnan K, et al.  Successful computer-assisted cognitive remediation therapy in patients with unipolar depression: a proof of principle study[J]. Psychol Med, 2007, 37(9): 1229-1238.   doi: 10.1017/S0033291707001110
[7] Stern Y.  Cognitive reserve: implications for assessment and intervention[J]. Folia Phoniatr Logop, 2013, 65: 49-54.   doi: 10.1159/000353443
[8] Alders GL, Davis AD, MacQueen G, et al.  Reduced accuracy accompanied by reduced neural activity during the performance of an emotional conflict task by unmedicated patients with major depression: a CAN-BIND fMRI study[J]. J Affect Disord, 2019, 257: 765-773.   doi: 10.1016/j.jad.2019.07.037
[9] Murphy CF, Gunning-Dixon FM, Hoptman MJ, et al.  White-matter integrity predicts stroop performance in patients with geriatric depression[J]. Biol Psychiatry, 2007, 61(8): 1007-1010.   doi: 10.1016/j.biopsych.2006.07.028
[10] Albert KM, Potter GG, Boyd BD, et al.  Brain network functional connectivity and cognitive performance in major depressive disorder[J]. J Psychiatr Res, 2019, 110: 51-56.   doi: 10.1016/j.jpsychires.2018.11.020
[11] Shi YS, Li J, Feng Z, et al.  Abnormal functional connectivity strength in first-episode, drug-naïve adult patients with major depressive disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 97: 109759-.   doi: 10.1016/j.pnpbp.2019.109759
[12]

Liu YJ, Chen YP, Liang XY, et al. Altered resting-state functional connectivity of multiple networks and disrupted correlation with executive function in major depressive disorder[J/OL]. Front Neurol, 2020, 11: 272[2020-12-08]. https://www.frontiersin.org/articles/10.3389/fneur.2020.00272/full. DOI: 10.3389/fneur.2020.00272.

[13] Rosen ML, Amso D, McLaughlin KA.  The role of the visual association cortex in scaffolding prefrontal cortex development: a novel mechanism linking socioeconomic status and executive function[J]. Dev Cogn Neurosci, 2019, 39: 100699-.   doi: 10.1016/j.dcn.2019.100699
[14] Loeffler LAK, Satterthwaite TD, Habel U, et al.  Attention control and its emotion-specific association with cognitive emotion regulation in depression[J]. Brain Imaging Behav, 2019, 13(6): 1766-1779.   doi: 10.1007/s11682-019-00174-9
[15] Peters AT, Burkhouse K, Feldhaus CC, et al.  Aberrant resting-state functional connectivity in limbic and cognitive control networks relates to depressive rumination and mindfulness: a pilot study among adolescents with a history of depression[J]. J Affect Disord, 2016, 200: 178-181.   doi: 10.1016/j.jad.2016.03.059
[16] Chin Fatt CR, Jha MK, Cooper CM, et al.  Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression[J]. Am J Psychiatry, 2020, 177(2): 143-154.   doi: 10.1176/appi.ajp.2019.18070870
[17] Zhao QH, Swati ZNK, Metmer H, et al.  Investigating executive control network and default mode network dysfunction in major depressive disorder[J]. Neurosci Lett, 2019, 701: 154-161.   doi: 10.1016/j.neulet.2019.02.045
[18] Li WJ, Ward BD, Xie CM, et al.  Amygdala network dysfunction in late-life depression phenotypes: relationships with symptom dimensions[J]. J Psychiatr Res, 2015, 70: 121-129.   doi: 10.1016/j.jpsychires.2015.09.002
[19] Shin JH, Um YH, Lee CU, et al.  Multiple cortical thickness sub-networks and cognitive impairments in first episode, drug naïve patients with late life depression: a graph theory analysis[J]. J Affect Disord, 2018, 229: 538-545.   doi: 10.1016/j.jad.2017.12.083
[20] Kikuchi T, Miller JM, Schneck N, et al.  Neural responses to incongruency in a blocked-trial Stroop fMRI task in major depressive disorder[J]. J Affect Disord, 2012, 143(1/3): 241-247.   doi: 10.1016/j.jad.2012.05.016
[21] Rizk MM, Rubin-Falcone H, Keilp J, et al.  White matter correlates of impaired attention control in major depressive disorder and healthy volunteers[J]. J Affect Disord, 2017, 222: 103-111.   doi: 10.1016/j.jad.2017.06.066
[22] Repple J, Meinert S, Grotegerd D, et al.  A voxel-based diffusion tensor imaging study in unipolar and bipolar depression[J]. Bipolar Disord, 2017, 19(1): 23-31.   doi: 10.1111/bdi.12465
[23] 陈丽萍, 许崇涛.  抑郁症患者认知功能的脑功能影像学研究进展[J]. 国际精神病学杂志, 2012, 39(1): 17-21.   doi: 10.13479/j.cnki.jip.2012.01.010
Chen LP, Xu CT.  Advances in brain functional imaging studies of cognitivefunction in patients with depression[J]. J Inter Psychiatry, 2012, 39(1): 17-21.   doi: 10.13479/j.cnki.jip.2012.01.010
[24] Schermuly I, Fellgiebel A, Wagner S, et al.  Association between cingulum bundle structure and cognitive performance: an observational study in major depression[J]. Eur Psychiatry, 2010, 25(6): 355-360.   doi: 10.1016/j.eurpsy.2010.05.001
[25] Liao Y, Huang XQ, Wu QZ, et al.  Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD[J]. J Psychiatry Neurosci, 2013, 38(1): 49-56.   doi: 10.1503/jpn.110180
[26] Sexton CE, McDermott L, Kalu UG, et al.  Exploring the pattern and neural correlates of neuropsychological impairment in late-life depression[J]. Psychol Med, 2012, 42(6): 1195-1202.   doi: 10.1017/S0033291711002352
[27] Bhatia KD, Henderson LA, Hsu E, et al.  Reduced integrity of the uncinate fasciculus and cingulum in depression: a stem-by-stem analysis[J]. J Affect Disord, 2018, 235: 220-228.   doi: 10.1016/j.jad.2018.04.055
[28] Sexton CE, Mackay CE, Ebmeier KP.  A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression[J]. Am J Geriatr Psychiatry, 2013, 21(2): 184-195.   doi: 10.1016/j.jagp.2012.10.019
[29] McTeague LM, Goodkind MS, Etkin A.  Transdiagnostic impairment of cognitive control in mental illness[J]. J Psychiatr Res, 2016, 83: 37-46.   doi: 10.1016/j.jpsychires.2016.08.001
[30] Arnone D, Job D, Selvaraj S, et al.  Computational meta-analysis of statistical parametric maps in major depression[J]. Hum Brain Mapp, 2016, 37(4): 1393-1404.   doi: 10.1002/hbm.23108
[31] Fu CHY, Fan Y, Davatzikos C.  Widespread morphometric abnormalities in major depression: neuroplasticity and potential for biomarker development[J]. Neuroimaging Clin N Am, 2020, 30(1): 85-95.   doi: 10.1016/j.nic.2019.09.008
[32] Butters MA, Becker JT, Nebes RD, et al.  Changes in cognitive functioning following treatment of late-life depression[J]. Am J Psychiatry, 2000, 157(12): 1949-1954.   doi: 10.1176/appi.ajp.157.12.1949