[1] Sun H, Song T. Hepatocellular carcinoma:Advances in diagnostic imaging[J]. Drug Discov Ther, 2015, 9 (5):310-318. DOI:10.5582/ddt.2015.01058.
[2] Haug AR. Imaging of primary liver tumors with positron-emission tomography[J]. Q J Nucl Med Mol Imaging, 2017, 61 (3):292-300. DOI:10.1053/j.sult.2012.11.006.
[3] Sun DW, An L, Wei F, et al. Prognostic significance of parameters from pretreatment 18F-FDG PET in hepatocellular carcinoma:a meta-analysis[J]. Abdom Radiol (NY), 2016, 41 (1):33-41. DOI:10.1007/s00261-015-0603-9.
[4] Deford-Watts L M, Mintz A, Kridel S J. The potential of 11C-acetate PET for monitoring the Fatty acid synthesis pathway in Tumors[J]. Curr Pharm Biotechnol, 2013, 14 (3):300-312. DOI:10.2174/1389201011314030006.
[5] Grassi I, Nanni C, Allegri V, et al. The clinical use of PET with 11C-acetate[J]. Am J Nucl Med Mol Imaging, 2012, 2 (1):33-47.
[6] Schiepers C, Huang SC, Dahlbom M. Dynamic PET/CT with 11C-acetate in prostate cancer[J]. J Nucl Med, 2013, 54 (2):326. DOI:10.2967/jnumed.112.112532.
[7] Ponde DE, Dence CS, Oyama N, et al. 18F-fluoroacetate:a potential acetate analog for prostate tumor imaging-in vivo evaluation of 18F-fluoroacetate versus 11C-acetate[J]. J Nucl Med, 2007, 48 (3):420-428.
[8] Wang H, Tang G, Hu K, et al. Comparison of three 18F-labeled carboxylic acids with 18F-FDG of the differentiation tumor from inflammation in model mice[J]. BMC Med Imaging, 2016, 16:2. DOI:10.1186/s12880-016-0110-7.
[9] Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis[J]. Nat Rev Cancer, 2007, 7 (10):763-777. DOI:10.1038/nrc2222.
[10] Calvisi DF, Wang C, Ho C, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma[J]. Gastroenterology, 2011, 140 (3):1071-1083. DOI:10.1053/j.gastro.2010.12.006.
[11] Brogsitter C, Zophel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT:comparative analysis for imaging prostate cancer patients[J]. Eur J Nucl Med Mol Imaging, 2013, 40 (Suppl 1):S18-27. DOI:10.1007/s00259-013-2358-2.
[12] Yamamoto Y, Nishiyama Y, Kameyama R, et al. Detection of hepatocellular carcinoma using 11C-choline PET:comparison with 18F-FDG PET[J]. J Nucl Med, 2008, 49 (8):1245-1248. DOI:10.2967/jnumed.108.052639.
[13]

Yoshii Y, Furukawa T, Oyama N, et al. Fatty acid synthase is a key target in multiple essential tumor functions of prostate cancer: uptake of radiolabeled acetate as a predictor of the targeted therapy outcome[J/OL]. Plos one, 2013, 8 (5): e64570[2018-05-22]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064570. DOI:10.1371/journal.pone.0064570.

[14] Kornberg A, Küpper B, Thrum K, et al. Increased 18F-FDG Uptake of hepatocellular carcinoma on positron emission tomography independently predicts tumor recurrence in liver transplant patients[J]. Transplantat Proc, 2009, 41 (6):2561-2563. DOI:10.1016/j.transproceed.2009.06.115.
[15] Dang YH, Cai J, Li X, et al. Imaging Potential and Biodistribution in vivo of 2-[18F]Fluoropropionic Acid in Breast Cancer-bearing Mice[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2015, 37 (3):320-324.DOI:10.3881/j.issn.1000-503X.2015.03.014.
[16] Pillarsetty N, Punzalan B, Larson SM. 2-18F-Fluoropropionic Acid as a PET Imaging Agent for Prostate Cancer[J]. J Nucl Med, 2009, 50 (10):1709-1714. DOI:10.2967/jnumed.109.064212.
[17] 张占文, 胡平, 唐刚华.肿瘤短链脂肪酸代谢PET显像剂研究进展[J].国际放射医学核医学杂志, 2017, 41 (6):430-436. DOI:10.3760/cma.j.issn.1673-4114.2017.06.009.
Zhang ZW, Hu P, Tang GH. Progress on short-chain fatty acid tumor molecular probes for PET imaging[J]. Int J Radiat Med Nucl Med, 2017, 41 (6):430-436.  doi: 10.3760/cma.j.issn.1673-4114.2017.06.009
[18] Wehrle JP, Ng CE, McGovern KA, et al. Metabolism of alternative substrates and the bioenergetic status of EMT6 tumor cell spheroids[J]. NMR Biomed, 2000, 13 (6):349-360. DOI:10.1002/ijc.23835.
[19] Ricks CA, Cook RM. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver[J]. J Dairy Sci, 1981, 64 (12):2324-2335.  doi: 10.3168/jds.S0022-0302(81)82854-8
[20] Carvalho MA, Zecchin KG, Seguin F, et al. Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model[J]. Int J Cancer, 2008, 123 (11):2557-2565. DOI:10.1002/IJC.23835.
[21] Wysham WZ, Roque DR, Han J, et al. Effects of Fatty Acid Synthase Inhibition by Orlistat on Proliferation of Endometrial Cancer Cell Lines[J]. Target Oncol, 2016, 11 (6):763-769. DOI:10.1007/s11523-016-0442-9.
[22] Ricks CA, Cook RM. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver[J]. J Dairy Sci, 1981, 64 (12):2324-2335. DOI:10.3168/jds.S0022-0302 (81)82854-8.
[23] Wysham WZ, Roque DR, Han J, et al. Effects of Fatty Acid Synthase Inhibition by Orlistat on Proliferation of Endometrial Cancer Cell Lines[J]. Target Oncol, 2016, 11 (6):763-769. DOI:10.1007/s11523-016-0442-9.
[24] Xiao X, Liu H, Li X. Orlistat treatment induces apoptosis and arrests cell cycle in HSC-3 oral cancer cells[J]. Microb Pathog, 2017, 112:15-19. DOI:10.1016/j.micpath.2017.09.001.
[25] Sokolowska E, Presler M, Goyke E, et al. Orlistat Reduces Proliferation and Enhances Apoptosis in Human Pancreatic Cancer Cells (PANC-1)[J]. Anticancer Res, 2017, 37 (11):6321-6327. DOI:10.21873/anticanres.12083.
[26] Li S, Qiu L, Wu B, et al. TOFA suppresses ovarian cancer cell growth in vitro and in vivo[J]. Mol Med Rep, 2013, 8 (2):373-378. DOI:10.3892/mmr.2013.1505.
[27] Guseva NV, Rokhlin OW, Glover RA, et al. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1 and Mcl-1 and kills prostate cancer cells independent of p53 status[J]. Cancer Biol Ther, 2011, 12 (1):80-85. DOI:10.4161/cbt.12.1.15721.