[1] Marhetti F, Coleman MA, Jones IM, et al. Candidate protein biodosimeters of human exposure to ionizing radiation[J]. Int J Radiat Biol, 2006, 82(9):605-639.
[2] Snyder AR, Morgan WF. Gene expression profiling after irradiation:clues to understanding acute anti persistent responses?[J]. Cancer Metastasis Rev, 2004, 23(3-4):259-268.
[3] Hildesheim J, Bulavin DV, Anver MR, et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53[J]. Cancer Res, 2002, 62(24):7305-7315.
[4] Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4/MAPKKK[J]. Cell, 1998, 95(4):521-530.
[5] Gupta M, Gupta SK, Hoffman B, et al. Gadd45a and Gadd45b protect hematopoietie cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition[J]. J Biol Chem, 2006, 281(26):17552-17558.
[6] Gupta SK, Gupta M, Hoffman B,et al. Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation[J]. Oncogene, 2006, 25(40):5537-5546.
[7] Hildesheim J, Belova GI, Tyner SD, et al. Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation[J]. Oncogene, 2004, 23(10):1829-1837.
[8] Tront JS, Hoffman B, Liebermann DA. Gadd45a suppresses Ras-Driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence[J]. Cancer Res, 2006, 66(17):8448-8454.
[9] Zhan Q. Gadd45a, a p53-and BRCA1-regulated stress protein, in cellular response to DNA damage[J]. Mutat Res, 2005, 569(1-2):133-143.
[10] Amundson SA, Bittner M, Chen Y, et al. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses[J]. Oncogene, 1999, 18(24):3666-3672.
[11] Gajdusek C, Onoda K, London S, et al. Early molecular changes in irradiated aortic endothelium[J]. J Cell Physiol, 2001, 188(1):8-23.
[12] Grace MB, McLeland CB, Blakely WF. Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker for radiation biodosimetry[J]. Int J Radiat Biol, 2002, 78(11):1011-1021.
[13] Jen KY, Cheung VG. Transcriptional response of lymphoblastoid cells to ionizing radiation[J]. Genome Res, 2003, 13(9):2092-2100.
[14] Akerman GS, Rosenzweig BA, Domon OE, et al. Alterations in gene expression profiles and the DNA-damage response in ionizing radiation-exposed TK6 Cells[J]. Environ Mol Mutagen, 2005, 45(2-3):188-205.
[15] Amundson SA,Do KT, Shahab S, et al. Identification of potential mRNA hiomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation[J]. Radiat Res, 2000, 154(3):342-346.
[16] Stassen T, Port M, Nuyken I, et al. Radiation-induced gene expression in MCF-7 cells[J]. Int J Radiat Biol, 2003, 79(5):319-331.
[17] Marko NF, Dieffenbach PB, Yan G, et al. Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal beta vs. external gamma radiation[J]. FASEB J, 2003, 17(11):1470-1486.
[18] Fernandez-Capetillo O, Lee A, Nussenzweig M, et al. H2AX:the histone guardian of the genome[J]. DNA Repair, 2004, 3(8-9):959-967.
[19] Wang H, Wang M, Wang H, et al. Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNAPK in human cells exposed to ionizing radiation and treated with kinase inhibitors[J]. J Cell Physiol, 2005, 202(2):492-502.
[20] Stiff T, O'Driscoll M, Rief N, et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation[J]. Cancer Res, 2004, 64(7):2390-2396.
[21] Lowndes NF, Toh GW. DNA repair:the importance of phosphorylating histone H2AX[J]. Curr Biol, 2005, 15(3):99-102.
[22] Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX[J]. Science, 2002, 96(5569):922-927.
[23] Paul T, Rogakou EP, Yamazaki V, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foei after DNA damage[J]. Curr Biol, 2000, 10(15):886-895.
[24] Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139[J]. J Biol Chem, 1998, 273(10):5858-5868.
[25] 王会平,周平坤.组蛋白H2AX与DNA损伤的分子感应[J].癌变.畸变.突变,2006,18(4):334-336.
[26] 闵锐,倪瑾.H2AX活化与DNA双链断裂及辐射剂量的关系[J].生命的化学,2006,26(5):427-429.
[27] Ding LH, Shingyoji M, Chen F, et al. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation:A comparative study of low and high doses[J]. Radiat Res, 2005, 164(1):17-26.
[28] Azzam El, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particXe irradiated to nonirradiated cells[J]. Proc Natl Acad Sci USA, 2001, 98(2):473-478.
[29] Shao C, Furusawa Y, Aoki M, et al. Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts[J]. Radiat Res, 2003, 160(3):318-323.
[30] Azzam El, de Toledo SM, Little JB. Expression of connexin43 is highly sensitive to ionizing radiation and other environmental stresses[J]. Cancer Res, 2003, 63(21):7128-7135.
[31] Glover D, Little JB, Lavin MF, et al. Low dose ionizing radiation-induced activation of connexin 43 expression[J], Int J Radiat Biol 2003, 79(12):955-964.