[1] 李红.  双源螺旋CT诊断冠脉易损斑块的应用价值[J]. 中国CT和MRI杂志, 2016, 14(1): 42-45.   doi: 10.3969/j.issn.1672-5131.2016.01.014
Li H.  The application velue of DSCT in the diagnosis of coronary vunerable plaques[J]. Chin J CT MRI, 2016, 14(1): 42-45.   doi: 10.3969/j.issn.1672-5131.2016.01.014
[2] Nakamura T, Tsutsumi Y, Shimizu Y, et al.  Ulcerated Carotid Plaques with Ultrasonic Echolucency Are Causatively Associated with Thromboembolic Cerebrovascular Events[J]. J Stroke Cerebrovasc Dis, 2013, 22(2): 93-99.   doi: 10.1016/j.jstrokecerebrovasdis.2011.06.015
[3] Valgimigli M, Agostoni P, Serruys PW.  Acute coronary syndromes: an emphasis shift from treatment to prevention; and the enduring challenge of vulnerable plaque detection in the cardiac catheterization laboratory[J]. J Cardiovasc Med (Hagerstown), 2007, 8(4): 221-229.   doi: 10.2459/01.JCM.0000263487.36993.37
[4] Gauss S, Achenbach S, Pflederer T, et al.  Assessment of coronary artery remodelling by dual-source CT: a head-to-head comparison with intravascular ultrasound[J]. Heart, 2011, 97(12): 991-997.   doi: 10.1136/hrt.2011.223024
[5] Maurovich-Horvat P, Ferencik M, Voros S, et al.  Comprehensive plaque assessment by coronary CT angiography[J]. Nat Rev Cardiol, 2014, 11(7): 390-402.   doi: 10.1038/nrcardio.2014.60
[6] Otsuka K, Fukuda S, Tanaka A, et al.  Napkin-Ring Sign on Coronary CT Angiography for the Prediction of Acute Coronary Syndrome[J]. JACC Cardiovasc Imaging, 2013, 6(4): 448-457.   doi: 10.1016/j.jcmg.2012.09.016
[7] 张晓东, 唐秉航, 李芳云, 等.  256层螺旋CT低剂量心脑血管联合成像初步研究[J]. 中华放射学杂志, 2011, 45(11): 1008-1012.   doi: 10.3760/cma.j.issn.1005-1201.2011.11.004
Zhang XD, Tang BH, Li FY, et al.  Low dose 256-slice spiral CT of coronary combined with carotid and cerebrovascular angiography[J]. Chin J Radiol, 2011, 45(11): 1008-1012.   doi: 10.3760/cma.j.issn.1005-1201.2011.11.004
[8] Leschka S, Stolzmann P, Desbiolles L, et al.  Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience[J]. Eur Radiol, 2009, 19(12): 2896-2903.   doi: 10.1007/s00330-009-1618-9
[9]

韩洋, 韩瑞娟, 陈国强, 等. Flash双源CT迭代重建80 kV低剂量冠状动脉CT成像的临床应用[J/OL]. 中华诊断学电子杂志, 2017, 5(1): 1−7[2018-11-11]. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhzdxdzzz201701001. DOI: 10.3877/cma.j.issn.2095-655X.2017.01.001.

Han Y, Han RJ, Chen GQ, et al. Clinical application of electrocardiogram-triggered high-pitch dual-source coronary CT angiography at 80 kV low radiation dose integrated iterative reconstruction technology[J/OL]. Chin J Diagnostics (Electronic Edition), 2017, 5(1): 1-7[2018-11-11]. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhzdxdzzz201701001. DOI: 10.3877/cma.j.issn.2095-655X.2017.01.001.

[10] 孙凯, 韩瑞娟, 王利军, 等.  大螺距双源CT心脏与头颈血管一站式联合扫描的可行性[J]. 中国医学影像技术, 2014, 30(1): 136-140.   doi: 10.13929/j.1003-3289.2014.01.013
Sun K, Han RJ, Wang LJ, et al.  Feasibility of high-pitch dual-source CT coronary combined with carotid and cerebrovascular angiography[J]. Chin J Med Imaging Technol, 2014, 30(1): 136-140.   doi: 10.13929/j.1003-3289.2014.01.013
[11] 刘淑蓉, 陈国强, 郑亮, 等.  CT心脑血管一体化成像的图像质量评价[J]. 国际放射医学核医学杂志, 2018, 42(5): 389-396.   doi: 10.3760/cma.j.issn.1673-4114.2018.05.001
Liu SR, Chen GQ, Zheng L, et al.  Evaluation of the image quality of integrated imaging in coronary combined with carotid and cerebrovascular computed tomography angiography[J]. Int J Radiat Med Nucl Med, 2018, 42(5): 389-396.   doi: 10.3760/cma.j.issn.1673-4114.2018.05.001
[12] Voudris KV, Chanin J, Feldman DN, et al.  Novel Inflammatory Biomarkers in Coronary Artery Disease: Potential Therapeutic Approaches[J]. Curr Med Chem, 2015, 22(22): 2680-2689.   doi: 10.2174/0929867322666150420124427
[13] 管雅琳, 于长申, 张莹, 等.  急性缺血性脑血管病患者血清ox-LDL及PAPP-A水平变化及临床意义[J]. 中国老年学杂志, 2016, 36(18): 4482-4483.   doi: 10.3969/j.issn.1005-9202.2016.18.038
Guan YL, Yu CS, Zhang Y, et al.  Changes of serum ox-LDL and PAPP-A levels in patients with acute ischemic cerebrovascular disease and its clinical significance[J]. Chin J Gerontol, 2016, 36(18): 4482-4483.   doi: 10.3969/j.issn.1005-9202.2016.18.038
[14] Viola M, Karousou E, D'Angelo ML, et al.  Extracellular Matrix in Atherosclerosis: Hyaluronan and Proteoglycans Insights[J]. Curr Med Chem, 2016, 23(26): 2958-2971.   doi: 10.2174/0929867323666160607104602
[15] Reimann C, Brangsch J, Colletini F, et al.  Molecular imaging of the extracellular matrix in the context of atherosclerosis[J]. Adv Drug Deliv Rev, 2017, 113: 49-60.   doi: 10.1016/j.addr.2016.09.005
[16] Wang MY, Kim SH, Monticone RE, et al.  Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis[J]. Hypertension, 2015, 65(4): 698-703.   doi: 10.1161/HYPERTENSIONAHA.114.03618
[17] Xu R, Yin X, Xu W, et al.  Assessment of carotid plaque neovascularization by contrast-enhanced ultrasound and high sensitivity C-reactive protein test in patients with acute cerebral infarction: a comparative study[J]. Neurol Sci, 2016, 37(7): 1107-1112.   doi: 10.1007/s10072-016-2557-2
[18] Matsuo Y, Kubo T, Okumoto Y, et al.  Circulating malondialdehyde-modified low-density lipoprotein levels are associated with the presence of thin-cap fibroatheromas determined by optical coherence tomography in coronary artery disease[J]. Eur Heart J Cardiovasc Imaging, 2013, 14(1): 43-50.   doi: 10.1093/ehjci/jes094
[19] Koyama K, Yoneyama K, Mitarai T, et al.  Association between inflammatory biomarkers and thin-cap fibroatheroma detected by optical coherence tomography in patients with coronary heart disease[J]. Arch Med Sci, 2015, 11(3): 505-512.   doi: 10.5114/aoms.2015.52352
[20] Zhang L, Cheng HL, Yue YX, et al.  TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1[J]. Cardiovasc Pathol, 2018, 33: 6-15.   doi: 10.1016/j.carpath.2017.11.004
[21]

Li H, Liu X, Zhang L, et al. LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway[J/OL]. Oncotarget, 2017, 8(70): 114568−114575 [2018-11-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777714/. DOI: 10.18632/oncotarget.21603.

[22]

Molina E, Chew GS, Myers SA, et al. A Novel Y-Specific Long Non-Coding RNA Associated with Cellular Lipid Accumulation in HepG2 Cells and Atherosclerosis-related Genes[J/OL]. Sci Rep, 2017, 7(1): 16710 [2018-11-11]. https://www.ncbi.nlm.nih.gov/pubmed/29196750. DOI: 10.1038/s41598-017-17165-9.

[23] Hu GQ, Tang QS, Sharma S, et al.  Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation[J]. Nat Immunol, 2013, 14(11): 1190-1198.   doi: 10.1038/ni.2712
[24]

Xia F, Dong FL, Yang Y, et al. Dynamic Transcription of Long Non-Coding RNA Genes during CD4+ T Cell Development and Activation[J/OL]. PLoS One, 2014, 9(7): e101588 [2018-11-11]. https://www.ncbi.nlm.nih.gov/pubmed/25003630. DOI: 10.1371/journal.pone.0101588.

[25]

Liu CY, Zhang YH, Li RB, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription[J/OL]. Nat Commun, 2018, 9(1): 29 [2018-11-11]. https://www.ncbi.nlm.nih.gov/pubmed/29295976. DOI: 10.1038/s41467-017-02280-y.