[1] Wang F, Wei ZL, Sun XR, et al. Apoptosis Inducing Factor Is Involved in Stretch-Induced Apoptosis of Myoblast via a Caspase-9 Independent Pathway[J]. J Cell Biochem, 2017, 118(4):829-838. DOI:10.1002/jcb.25759.
[2] Blankenberg FG, Robbins RC, Stoot JH, et al. Radionuclide imaging of acute lung transplant rejection with annexin V[J]. Chest, 2000, 117(3):834-840. DOI:10.1378/chest.117.3.834.
[3] Jibran SM, Muhammad IG. Clinical patterns of seronegative spondyloarthropathies in a tertiary centre in Pakistan[J]. J Taibah Univ Med Sci, 2018, 13(3):298-301. DOI:10.1016/j.jtumed.2018. 03.002.
[4] 王小龙, 赵建民, 刘瑞, 等.细胞凋亡在激素诱导性股骨头坏死中的研究进展[J].实用骨科杂志, 2015, 21(1):56-59.
Wang XL, Zhao JM, Liu R, et al. The research development of cell apoptosis in hormone induced femoral head necrosis[J]. J Pract Orthopaedics, 2015, 21(1):56-59.
[5] 赵阳, 彭景, 张雪宁. MR分子探针与分子成像的研究进展[J].国际医学放射学杂志, 2015, 38(5):455-460. DOI:10.3874/j.issn.1674-1897.2015.05.Z0510.
Zhao Y, Peng J, Zhang XN. Progress in magnetic molecular probes and molecular magnetic resonance imaging[J]. Int J Med Radiol, 2015, 38(5):455-460. DOI:10.3874/j.issn.1674-1897. 2015.05.Z0510.
[6] 安淑娴, 宋少莉, 黄钢.放射性核素标记的凋亡显像剂的研究进展[J].国际放射医学核医学杂志, 2015, 39(6):470-477. DOI:10.3760/cma.j.issn.1673-4114.2015.06.008.
An SX, Song SL, Huang G. Recent advances in apoptosis imaging using radionuclide-labeled tracers[J]. Int J Radiat Med Nucl Med, 2015, 39(6):470-477. DOI:10.3760/cma.j.issn.1673-4114. 2015. 06.008.
[7] 王健, 宋秀宇, 徐文贵, 等.乳腺癌放射性核素分子成像研究进展[J].国际医学放射学杂志, 2015, 38(4):361-365. DOI:10.3874/j.issn.1674-1897.2015.04.Z0411.
Wang J, Song XY, Xu WG, et al. The research progress of radionuclide molecular imaging for breast cancer[J]. Int J Med Radiol, 2015, 38(4):361-365. DOI:10.3874/j.issn.1674-1897. 2015.04.Z0411.
[8] 杨桂芬, 朱虹.放射性核素标记Anx Ⅴ细胞凋亡分子成像在肿瘤化疗疗效评估中的价值[J].国际医学放射学杂志, 2013, 36(2):155-159. DOI:10.3874/j.issn.1674-1897.2013.02.Z0212.
Yang GF, Zhu H. Molecular imaging of cell apoptosis with radiolabeled Anx Ⅴ in the evaluation of tumor response to chemotherapy[J]. Int J Med Radiol, 2013, 36(2):155-159. DOI:10.3874/j.issn.1674-1897.2013.02.Z0212.
[9] Pietkiewicz S, Schmidt JH, Lavrik IN. Quantification of apoptosis and necroptosis at the single cell level by a combination of imaging flow cytometry with classical Annexin V/propidium iodide staining[J]. J Immunol Methods, 2015, 423:99-103. DOI:10.1016/j.jim.2015.04.025.
[10]

Head T, Dau P, Duffort S, et al. An enhanced bioluminescence-based Annexin V probe for apoptosis detection in vitro and in vivo[J/OL]. Cell Death Dis, 2017, 8(5): e2826[2018-08-12]. https://www.nature.com/articles/cddis2017141. DOI: 10.1038/cddis.2017.141.

[11] Bauwens M, De Saint-Hubert M, Devos E, et al. Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis[J]. Nucl Med Biol, 2011, 38(3):381-392. DOI:10.1016/j.nucmedbio.2010.09.008.
[12] Lin MH, Wu SY, Wang HE, et al. 111In-DOTA-Annexin V for imaging of apoptosis during HSV1-tk/GCV prodrug activation gene therapy in mice with NG4TL4 sarcoma[J]. Appl Radiat Isot, 2016, 108:1-7. DOI:10.1016/j.apradiso. 2015.11.017.
[13] Vangestel C, Peeters M, Mees G, et al. In vivo imaging of apoptosis in oncology:an update[J]. Mol Imaging, 2011, 10(5):340-358. DOI:10.2310/7290.2010.00058.
[14] Schaper FL, Reutelingsperger CP. 99mTc-HYNIC-Annexin A5 in Oncology:Evaluating Efficacy of Anti-Cancer Therapies[J]. Cancers (Basel), 2013, 5(2):550-568. DOI:10.3390/cancers5020550.
[15] Zhang S, Wu Z, Li J, et al. Evaluation of the clinical relevance of anti-annexin-A5 antibodies in Chinese patients with antiphospholipid syndrome[J]. Clin Rheumatol, 2017, 36(2):407-412. DOI:10.1007/s10067-016-3510-8.
[16] Belhocine T, Steinmetz N, Hustinx R, et al. Increased uptake of the apoptosis-imaging agent 99mTc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis[J]. Clin Cancer Res, 2002, 8(9):2766-2774.
[17] Van de Wiele C, Vermeersch H, Loose D, et al. Radiolabeled annexin-V for monitoring treatment response in oncology[J]. Cancer Biother Radiopharm, 2004, 19(2):189-194. DOI:10.1089/108497804323071968.
[18] Tang C, Wang F, Hou Y, et al. Technetium-99m-labeled annexin V imaging for detecting prosthetic joint infection in a rabbit model[J]. J Biomed Res, 2015, 29(3):224-231. DOI:10.7555/JBR.29. 2013. 01.13.
[19] Schaper FL, Reutelingsperger CP. 99mTc-HYNIC-Annexin A5 in Oncology:Evaluating Efficacy of Anti-Cancer Therapies[J]. Cancers, 2013, 5(2):550-568. DOI:10.3390/cancers5020550.
[20] Hu Y, Liu G, Zhang H, et al. A Comparison of 99mTc-Duramycin and 99mTc-Annexin V in SPECT/CT Imaging Atherosclerotic Plaques[J]. Mol Imaging Biol, 2018, 20(2):249-259. DOI:10.1007/s11307-017-1111-9.
[21] Khoda Me, Utsunomiya K, Ha-Kawa S, et al. An investigation of the early detection of radiation induced apoptosis by 99mTc-Annexin V and 201thallium-chloride in a lung cancer cell line[J]. J Radiat Ras, 2012, 53(3):361-367. DOI:10.1269/jrr.11177.
[22] Taki J, Higuchi T, Kawashima A, et al. Effect of postconditioning on myocardial 99mTc-annexin-V uptake:comparison with ischemic preconditioning and caspase inhibitor treatment[J]. J Nucl Med, 2007, 48(8):1301-1307. DOI:10.2967/jnumed.106.037408.
[23] Doue T, Ohtsuki K, Ogawa K, et al. Cardioprotective effect of erythropoietin in rats subjected to ischemia-reperfusion injury:assessment of infarct size with 99mTc-AnnexinV[J]. J Nucl Med, 2008, 49(10):1694-1700. DOI:10.2967/jnumed.107.050260.
[24] Keitselaer BL, Reutelingsperger CP, Boersma HH, et al. Noninvasive detection of programmed cell loss with 99mTc-labeled Annexin A5 in heart failure[J]. J Nucl Med, 2007, 48(4):562-567.DOI:10.2967/jnumed.106.039453.
[25] Hu S, Kiesewetter DO, Zhu L, et al. Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V[J]. Mol Imaging Biol, 2012, 14(6):762-770. DOI:10.1007/s11307-012-0551-5.
[26]

胡四龙. 18F-ML-10 PET/CT评价胰腺癌放化疗后细胞凋亡的实验研究[D].上海: 复旦大学, 2013.

Hu SL. 18F-ML-10 PET/CT evaluation of pancreatic cancer cell apoptosis after concurrent chemoradiation experimental research[D]. Shanghai: Fudan University, 2013.

[27]

陈顺军. 18F-ML-10 PET/CT显像探测化疗后肿瘤细胞凋亡的实验研究[D].郑州: 郑州大学, 2017.

Chen SJ. 18F-ML-10 PET/CT imaging detection experiment research of tumor cell apoptosis after chemotherapy[D]. Zhengzhou: Zhengzhou University, 2017.

[28] Liu M, Zheng S, Zhang X, et al. Cerenkov luminescence imaging on evaluation of early response to chemotherapy of drug-resistant gastric cancer[J]. Nanomedicine, 2018, 14(1):205-213. DOI:10.1016/j.nano.2017.10.001.
[29] 张毅, 郭瀛军, 王芳, 等. Annexin B1:一种新的细胞凋亡检测用蛋白[J].第二军医大学学报, 2003, 24(3):333-334. DOI:10.3321/j.issn:0258-879X.2003.03.031.
Zhang Y, Guo YJ, Wang F, et al. Annexin B1 as a novel protein for detecting apoptosis[J]. Acad J Sec Mil Med Univ, 2003, 24(3):333-334. DOI:10.3321/j.issn:0258-879X.2003.03.031.
[30] 郑宇佳, 王明伟, 张建平, 等. 18F-SFB-Annexin B1探测化疗后肿瘤细胞凋亡的实验研究[J].中国癌症杂志, 2013, 23(10):798-803. DOI:10.3969/j.issn.1007-3969.2013.10.004.
Zheng YJ, Wang MW, Zhang JP, et al. Experimental study on tumor response to chemotherapy with 18F-SFB-Annexin B1[J]. Chin Oncol, 2013, 23(10):798-803. DOI:10.3969/j.issn.1007-3969. 2013. 10. 004.
[31] 赵庆, 章英剑, 王芳, 等. 18F-SFB-Annexin B1探测细胞凋亡实验研究[J].中华核医学杂志, 2011, 31(2):112-116. DOI:10.3760/cma.j.issn.0253-9780.2011.02.010.
Zhao Q, Zhang YJ, Wang F, et al. Evaluation of 18F-SFB-Annexin B1 in detecting apoptosis[J]. Chin J Nucl Med, 2011, 31(2):112-116. DOI:10.3760/cma.j.issn.0253-9780.2011.02.010.
[32] Wang MW, Wang F, Zheng YJ, et al. An in vivo molecular imaging probe 18F-Annexin B1 for apoptosis detection by PET/CT preparation and preliminary evaluation[J]. Apoptosis, 2013, 18(2):238-247. DOI:10.1007/s10495-012-0788-0.
[33] Zhao M, Zhu X, Ji S, et al. 99mTc-labeled C2A domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction[J]. J Nucl Med, 2006, 47(8):1367-1374.
[34] 方纬, 王峰, 季顺东, 等. 99Tcm-FM2心肌细胞凋亡显像的实验研究[J].中华核医学杂志, 2006, 26(3):137-140. DOI:10.3760/cma.j.issn.2095-2848.2006.03.008.
Fang W, Wang F, Ji SD, et al. Experimental study of myocardial cell apoptosis with 99Tcm-FM2 imaging[J]. Chin J Nucl Med, 2006, 26(3):137-140. DOI:10.3760/cma.j.issn.2095-2848.2006.03.008.
[35] Wang F, Fang W, Zhang MR, et al. Evaluation of chemotherapy response in VX2 rabbit lung cancer with 18F-labeled C2A domain of synaptotagmin I[J]. J Nucl Med, 2011, 52(4):592-599. DOI:10.2967/jnumed.110.081588.
[36] 黄斌, 方纬, 田伟, 等. 68Ga-NOTA-Duramycin的标记与生物分布实验研究[J].中华核医学与分子影像杂志, 2012, 32(4):286-290. DOI:10.3760/cma.j.issn.2095-2848.2012.04.011.
Huang B, Fang W, Tian W, et al.Experimental study of labeling and biodistribution of 68Ga-NOTA-Duramycin[J]. Chin J Nucl Med Mol Imaging, 2012, 32(4):286-290. DOI:10.3760/cma.j.issn.2095-2848. 2012.04.011.
[37] Hasim S, Allison DP, Mendez B, et al. Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope[J]. Front Microbiol, 2018, 9:219. DOI:10.3389/fmicb.2018.00219.
[38] Huo L, Ökesli A, Zhao M, et al. Insights into the Biosynthesis of Duramycin[J]. Appl Environ Microbiol, 2017, 83(3):e02698-16.DOI:10.1128/AEM.02698-16.
[39] Mills JC, Stone NL, Erhardt J, et al. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation[J]. J Cell Biol, 1998, 140(3):627-636. DOI:10.1083/jcb.140.3.627.
[40] Liu Z, Larsen BT, Lerman LO, et al. Detection of atherosclerotic plaques in ApoE-deficient mice using 99mTc-duramycin[J]. Nucl Med Biol, 2016, 43(8):496-505. DOI:10.1016/j.nucmedbio.2016.05.007.
[41] Wang L, Wang F, Fang W, et al. The feasibility of imaging myocardial ischemic/reperfusion injury using 99mTc-labeled duramycin in a porcine model[J]. Nucl Med Biol, 2015, 42(2):198-204. DOI:10.1016/j.nucmedbio.2014.09.002.
[42] Zhang Y, Stevenson GD, Barber C, et al. Imaging of rat cerebral ischemia-reperfusion injury using 99mTc-labeled duramycin[J]. Nucl Med Biol, 2013, 40(1):80-88. DOI:10.1016/j.nucmedbio.2012.09. 004.
[43] Montiel-Cervantes LA, Reyes-Maldonado E, Garcia-Chavez J, et al. Prognostic Value of CD95, Active Caspase-3, and Bcl-2 Expression in Adult Patients with De Novo Acute Lymphoblastic Leukemia[J]. Arch Med Res, 2018, 49(1):44-50. DOI:10.1016/j.arcmed.2018. 04. 006.
[44] Zhou D, Chu W, Rothfuss J, et al. Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis[J]. Bioorg Med Chem Lett, 2006, 16(19):5041-5046. DOI:10.1016/j.bmcl.2006.07.045.
[45]

葛青山.新型双光子纳米探针的构建及用于caspase-3活性检测研究[D].长沙: 湖南大学, 2017.

Ge QS. The construction of a new two-photon nanoprober and used in the study of caspase 3 activity detection[D]. Changsha: Hunan University, 2017.

[46] Xia CF, Chen G, Gangadharmath U, et al. In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer 18F-CP18 for PET imaging of apoptosis in tumors[J]. Mol Imaging Biol, 2013, 15(6):748-757. DOI:10.1007/s11307-013-0646-7.
[47] Madar I, Ravert H, Nelkin B, et al. Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyltriphenyl phosphonium cation[J]. Eur J Nucl Med Mol Imaging, 2007, 34(12):2057-2065. DOI:10.1007/s00259-007-0500-8.
[48] Higuchi T, Fukushima K, Rischpler C, et al. Stable delineation of the ischemic area by the PET perfusion tracer 18F-fluorobenzyl triphenyl phosphonium after transient coronary occlusion[J]. J Nucl Med, 2011, 52(6):965-969. DOI:10.2967/jnumed.110.085993.
[49] 王腾腾, 张锦明, 张涛, 等. PET小分子凋亡显像示踪剂的研究进展[J].解放军医学院学报, 2015, 36(6):637-639. DOI:10.3969/j.issn.2095-5227.2015.06.032.
Wang TT, Zhang JM, Zhang T, et al. Advances in small molecule radiotracer for PET imaging apoptosis[J]. Acad Chin PLA Med Sch, 2015, 36(6):637-639. DOI:10.3969/j.issn.2095-5227. 2015.06.032.
[50] Oborski MJ, Laymon CM, Lieberman FS, et al. First use of 18F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy[J]. Brain Behav, 2014, 4(2):312-315. DOI:10.1002/brb3.217.