[1] Bade BC, Dela Cruz CS.  Lung cancer 2020: epidemiology, etiology, and prevention[J]. Clin Chest Med, 2020, 41(1): 1-24.   doi: 10.1016/j.ccm.2019.10.001
[2] Mengoli MC, Longo FR, Fraggetta F, et al.  The 2015 World Health Organization classification of lung tumors: new entities since the 2004 classification[J]. Pathologica, 2018, 110(1): 39-67.
[3] Xu J, Liu PP, Da J, et al.  Prognostic value of Ki-67 in stage Ⅰ non-small-cell lung cancer: a meta-analysis involving 1931 patients[J]. Pathol Res Pract, 2019, 215(5): 855-860.   doi: 10.1016/j.prp.2019.02.020
[4] Antunovic L, Gallivanone F, Sollini M, et al.  [18F]FDG PET/CT features for the molecular characterization of primary breast tumors[J]. Eur J Nucl Med Mol Imaging, 2017, 44(12): 1945-1954.   doi: 10.1007/s00259-017-3770-9
[5]

Jacobsen F, Kohsar J, Gebauer F, et al. Loss of p16 and high Ki67 labeling index is associated with poor outcome in esophageal carcinoma[J/OL]. Oncotarget, 2020, 11(12): 1007−1016[2021-08-23]. https://www.oncotarget.com/article/27507/text. DOI: 10.18632/oncotarget.27507.

[6] Sauter AW, Winterstein S, Spira D, et al.  Multifunctional profiling of non-small cell lung cancer using 18F-FDG PET/CT and volume perfusion CT[J]. J Nucl Med, 2012, 53(4): 521-529.   doi: 10.2967/jnumed.111.097865
[7] Park S, Lee E, Rhee S, et al.  Correlation between semi-quantitative 18F-FDG PET/CT parameters and Ki-67 expression in small cell lung cancer[J]. Nucl Med Mol Imaging, 2016, 50(1): 24-30.   doi: 10.1007/s13139-015-0363-z
[8] 许莉, 李素平.  18F-FDG PET/CT代谢参数与非小细胞肺癌EGFR、ALK、KRAS突变的相关性研究进展[J]. 国际放射医学核医学杂志, 2020, 44(8): 515-521.   doi: 10.3760/cma.j.cn121381-201906035-00066
Xu L, Li SP.  Research progress on the correlation between 18F-FDG PET/CT metabolic parameters and mutations of EGFR, ALK and KRAS in non-small cell lung cancer[J]. Int J Radiat Med Nucl Med, 2020, 44(8): 515-521.   doi: 10.3760/cma.j.cn121381-201906035-00066
[9] Travis WD, Brambilla E, Nicholson AG, et al.  The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification[J]. J Thorac Oncol, 2015, 10(9): 1243-1260.   doi: 10.1097/JTO.0000000000000630
[10] Nakamura H, Saji H, Shinmyo T, et al.  Close association of IASLC/ATS/ERS lung adenocarcinoma subtypes with glucose-uptake in positron emission tomography[J]. Lung Cancer, 2015, 87(1): 28-33.   doi: 10.1016/j.lungcan.2014.11.010
[11] Grant L, Banerji S, Murphy L, et al.  Androgen receptor and Ki67 expression and survival outcomes in non-small cell lung cancer[J]. Horm Cancer, 2018, 9(4): 288-294.   doi: 10.1007/s12672-018-0336-7
[12] Vesselle H, Salskov A, Turcotte E, et al.  Relationship between non-small cell lung cancer FDG uptake at PET, tumor histology, and Ki-67 proliferation index[J]. J Thorac Oncol, 2008, 3(9): 971-978.   doi: 10.1097/JTO.0b013e31818307a7
[13] Wang Y, Zhao N, Wu ZB, et al.  New insight on the correlation of metabolic status on 18F-FDG PET/CT with immune marker expression in patients with non-small cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2020, 47(5): 1127-1136.   doi: 10.1007/s00259-019-04500-7
[14]

Nakamura H, Saji H, Marushima H, et al. Standardized uptake values in the primary lesions of non-small-cell lung cancer in FDG-PET/CT can predict regional lymph node metastases[J]. Ann Surg Oncol, 2015, 22(Suppl 3): S1388−1393. DOI: 10.1245/s10434-015-4564-6.

[15] Nguyen XC, Lee WW, Chung JH, et al.  FDG uptake, glucose transporter type 1, and Ki-67 expressions in non-small-cell lung cancer: correlations and prognostic values[J]. Eur J Radiol, 2007, 62(2): 214-219.   doi: 10.1016/j.ejrad.2006.12.008
[16] van Baardwijk A, Dooms C, van Suylen RJ, et al.  The maximum uptake of 18F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1α and GLUT-1 in non-small cell lung cancer[J]. Eur J Cancer, 2007, 43(9): 1392-1398.   doi: 10.1016/j.ejca.2007.03.027