[1] Jagust W.  Imaging the evolution and pathophysiology of Alzheimer disease[J]. Nat Rev Neurosci, 2018, 19(11): 687-700.   doi: 10.1038/s41583-018-0067-3
[2] Jagust W.  Time for tau[J]. Brain, 2014, 137(6): 1570-1571.   doi: 10.1093/brain/awu093
[3] Villemagne VL, Fodero-Tavoletti MT, Masters CL, et al.  Tau imaging: early progress and future directions[J]. Lancet Neurol, 2015, 14(1): 114-124.   doi: 10.1016/S1474-4422(14)70252-2
[4]

Kolb HC, Andrés JI. Tau positron emission tomography imaging[J/OL]. Cold Spring Harb Perspect Biol, 2017, 9(5): a023721[2019-05-07]. http://cshperspectives.cshlp.org. DOI: 10.1101/cshperspect.a023721.

[5] Xia CF, Arteaga J, Chen G, et al.  [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer′s disease[J]. Alzheimers Dement, 2013, 9(6): 666-676.   doi: 10.1016/j.jalz.2012.11.008
[6] Chien DT, Bahri S, Szardenings AK, et al.  Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807[J]. J Alzheimers Dis, 2013, 34(2): 457-468.   doi: 10.3233/JAD-122059
[7] Thal DR, Vandenberghe R.  Monitoring the progression of Alzheimer's disease with τ-PET[J]. Brain, 2016, 139(5): 1318-1320.   doi: 10.1093/brain/aww057
[8] Shcherbinin S, Schwarz AJ, Joshi A, et al.  Kinetics of the tau PET tracer 18F-AV-1451 (T807) in subjects with normal cognitive function, mild cognitive impairment, and Alzheimer disease[J]. J Nucl Med, 2016, 57(10): 1535-1542.   doi: 10.2967/jnumed.115.170027
[9]

Lowe VJ, Curran G, Fang P, et al. An autoradiographic evaluation of AV-1451 tau PET in dementia[J/OL]. Acta Neuropathol Commun, 2016, 4(1): 58[2019-05-07]. https://actaneurocomms.biomedcentral.com. DOI: 10.1186/s40478-016-0315-6.

[10] Marquié M, Normandin MD, Meltzer AC, et al.  Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies[J]. Ann Neurol, 2017, 81(1): 117-128.   doi: 10.1002/ana.24844
[11] Schöll M, Maass A, Mattsson N, et al.  Biomarkers for tau pathology[J]. Mol Cell Neurosci, 2019, 97: 18-33.   doi: 10.1016/j.mcn.2018.12.001
[12] Braak H, Braak E.  Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol, 1991, 82(4): 239-259.   doi: 10.1007/BF00308809
[13] Schwarz AJ, Yu P, Miller BB, et al.  Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages[J]. Brain, 2016, 139(5): 1539-1550.   doi: 10.1093/brain/aww023
[14] Lowe VJ, Wiste HJ, Senjem ML, et al.  Widespread brain tau and its association with ageing, Braak stage and Alzheimer's dementia[J]. Brain, 2018, 141(1): 271-287.   doi: 10.1093/brain/awx320
[15] Lockhart SN, Schöll M, Baker SL, et al.  Amyloid and tau PET demonstrate region-specific associations in normal older people[J]. Neuroimage, 2017, 150: 191-199.   doi: 10.1016/j.neuroimage.2017.02.051
[16] Maass, A, Lockhart SN, Harrison TM, et al.  Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging[J]. J Neurosci, 2018, 38(3): 530-543.   doi: 10.1523/JNEUROSCI.2028-17.2017
[17] Buckley RF, Hanseeuw B, Schultz AP, et al.  Region-specific association of subjective cognitive decline with tauopathy independent of global β-amyloid burden[J]. JAMA Neurol, 2017, 74(12): 1455-1463.   doi: 10.1001/jamaneurol.2017.2216
[18] Polanco JC, Li CZ, Bodea LG, et al.  Amyloid-β and tau complexity-towards improved biomarkers and targeted therapies[J]. Nat Rev Neurol, 2018, 14(1): 22-39.   doi: 10.1038/nrneurol.2017.162
[19] Roberson ED, Scearce-Levie K, Palop JJ, et al.  Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model[J]. Science, 2007, 316(5825): 750-754.   doi: 10.1126/science.1141736
[20] Tosun D, Landau S, Aisen PS, et al.  Association between tau deposition and antecedent amyloid-β accumulation rates in normal and early symptomatic individuals[J]. Brain, 2017, 140(5): 1499-1512.   doi: 10.1093/brain/awx046
[21] Pontecorvo MJ, Devous MD Sr, Navitsky M, et al.  Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition[J]. Brain, 2017, 140(3): 748-763.   doi: 10.1093/brain/aww334
[22] Koychev I, Gunn RN, Firouzian A, et al.  PET tau and amyloid-β burden in mild Alzheimer's disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers[J]. J Alzheimers Dis, 2017, 60(1): 283-293.   doi: 10.3233/JAD-170129
[23]

Iaccarino L, Tammewar G, Ayakta N, et al. Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer's disease[J/OL]. Neuroimage Clin, 2017, 17: 452−464[2019-05-07]. https://www.ncbi.nlm.nih.gov/pmc/journals/2173. DOI: 10.1016/j.nicl.2017.09.016.

[24] Dubois B, Feldman HH, Jacova C, et al.  Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol, 2014, 13(6): 614-629.   doi: 10.1016/S1474-4422(14)70090-0
[25] Sarazin M, Lagarde J, Bottlaender M.  Distinct tau PET imaging patterns in typical and atypical Alzheimer's disease[J]. Brain, 2016, 139(5): 1321-1324.   doi: 10.1093/brain/aww041
[26] Ossenkoppele R, Schonhaut DR, Schöll M, et al.  Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease[J]. Brain, 2016, 139(5): 1551-1567.   doi: 10.1093/brain/aww027
[27] Xia CJ, Makaretz SJ, Caso C, et al.  Association of in vivo [18F]AV-1451 Tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease[J]. JAMA Neurol, 2017, 74(4): 427-436.   doi: 10.1001/jamaneurol.2016.5755
[28] Cho H, Choi JY, Lee HS, et al.  Progressive tau accumulation in Alzheimer's disease: two-year follow-up study[J]. J Nucl Med, 2019, 60(11): 1611-1621.   doi: 10.2967/jnumed.118.221697
[29] Seeley WW, Crawford RK, Zhou J, et al.  Neurodegenerative diseases target large-scale human brain networks[J]. Neuron, 2009, 62(1): 42-52.   doi: 10.1016/j.neuron.2009.03.024
[30] Jones DT, Graff-Radford J, Lowe VJ, et al.  Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum[J]. Cortex, 2017, 97: 143-159.   doi: 10.1016/j.cortex.2017.09.018
[31] Grothe MJ, Teipel SJ.  Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks[J]. Hum Brain Mapp, 2016, 37(1): 35-53.   doi: 10.1002/hbm.23018
[32] Jones DT, Knopman DS, Gunter JL, et al.  Cascading network failure across the Alzheimer's disease spectrum[J]. Brain, 2016, 139(2): 547-562.   doi: 10.1093/brain/awv338
[33] de Calignon A, Polydoro M, Suárez-Calvet M, et al.  Propagation of tau pathology in a model of early Alzheimer's disease[J]. Neuron, 2012, 73(4): 685-697.   doi: 10.1016/j.neuron.2011.11.033
[34]

Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo[J/OL]. PLoS One, 2012, 7(2): e31302[2019-05-07]. http://www.plosone.org. DOI: 10.1371/journal.pone.0031302.

[35] Hoenig MC, Bischof GN, Seemiller J, et al.  Networks of tau distribution in Alzheimer's disease[J]. Brain, 2018, 141(2): 568-581.   doi: 10.1093/brain/awx353
[36] Hansson O, Grothe MJ, Strandberg TO, et al.  Tau pathology distribution in Alzheimer's disease corresponds differentially to cognition-relevant functional brain networks[J]. Front Neurosci, 2017, 11: 167-.   doi: 10.3389/fnins.2017.00167
[37]

Wiepert DA, Lowe VJ, Knopman DS, et al. A robust biomarker of large-scale network failure in Alzheimer's disease[J/OL]. Alzheimers Dement(Amst), 2017, 6: 152−161[2019-05-07]. https://alz-journals.onlinelibrary.wiley.com/journal/23528729. DOI: 10.1016/j.dadm.2017.01.004.

[38] Choi JY, Cho H, Ahn SJ, et al.  Off-target 18F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation[J]. J Nucl Med, 2018, 59(1): 117-120.   doi: 10.2967/jnumed.117.195248
[39] Vermeiren C, Motte P, Viot D, et al.  The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases[J]. Mov Disord, 2018, 33(2): 273-281.   doi: 10.1002/mds.27271
[40] Hansen AK, Brooks DJ, Borghammer P, et al.  MAO-B inhibitors do not block in vivo flortaucipir([18F]-AV-1451) binding[J]. Mol Imaging Biol, 2018, 20(3): 356-360.   doi: 10.1007/s11307-017-1143-1
[41]

Marquié M, Verwer EE, Meltzer AC, et al. Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson's case[J/OL]. Acta Neuropathol Commun, 2017, 5(1): 75[2019-05-07]. https://actaneurocomms.biomedcentral.com. DOI: 10.1186/s40478-017-0482-0.

[42] Wong DF, Comley RA, Kuwabara H, et al.  Characterization of 3 novel tau radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in healthy controls and in Alzheimer subjects[J]. J Nucl Med, 2018, 59(12): 1869-1876.   doi: 10.2967/jnumed.118.209916
[43] Hostetler ED, Walji AM, Zeng ZZ, et al.  Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles[J]. J Nucl Med, 2016, 57(10): 1599-1606.   doi: 10.2967/jnumed.115.171678
[44] Kroth H, Oden F, Molette J, et al.  Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies[J]. Eur J Nucl Med Mol Imaging, 2019, 46(10): 2178-2189.   doi: 10.1007/s00259-019-04397-2
[45] Jack CR Jr, Bennett DA, Blennow K, et al.  NIA-AA research framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562.   doi: 10.1016/j.jalz.2018.02.018