[1] Duara R, Barker W, Loewenstein D, et al. Insights into cognitive aging and Alzheimer's disease using amyloid PET and structural MRI scans[J]. Clin Transl Imaging, 2015, 3(1):65-74. DOI:10.1007/s40336-015-0110-6.
[2] Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer's disease:the IWG-2 criteria[J]. Lancet Neurol, 2014, 13(6):614-629. DOI:10.1016/S1474-4422(14)70090-0.
[3] Shivamurthy VK, Tahari AK, Marcus C, et al. Brain FDG PET and the diagnosis of dementia[J]. AJR Am J Roentgenol, 2015, 204(1):W76-85. DOI:10.2214/AJR.13.12363.
[4] Mosconi L, Murray J, Tsui WH, et al. Brain imaging of cognitively normal individuals with 2 parents affected by late-onset AD[J]. Neurology, 2014, 82(9):752-760. DOI:10.1212/WNL.0000000000000181.
[5] Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer's disease:Definition, natural history, and diagnostic criteria[J]. Alzheimers Dement, 2016, 12(3):292-323. DOI:10.1016/j.jalz.2016.02.002.
[6] Clerici F, Del SA, Chiti A, et al. Differences in hippocampal metabolism between amnestic and non-amnestic MCI subjects:automated FDG-PET image analysis[J]. Q J Nucl Med Mol Imaging, 2009, 53(6):646-657.
[7] Del SA, Clerici F, Chiti A, et al. Individual cerebral metabolic deficits in Alzheimer's disease and amnestic mild cognitive impairment:an FDG PET study[J]. Eur J Nucl Med Mol Imaging, 2008, 35(7):1357-1366. DOI:10.1007/s00259-008-0773-6.
[8] Perani D, Cerami C, Caminiti SP, et al. Cross-validation of biomarkers for the early differential diagnosis and prognosis of dementia in a clinical setting[J]. Eur J Nucl Med Mol Imaging, 2016, 43(3):499-508. DOI:10.1007/s00259-015-3170-y.
[9] Buhour MS, Doidy F, Laisney M, et al. Pathophysiology of the behavioral variant of frontotemporal lobar degeneration:A study combining MRI and FDG-PET[J]. Brain Imaging Behav, 2017, 11(1):240-252. DOI:10.1007/s11682-016-9521-x.
[10] Matías-Guiu JA, Cabrera-Martín MN, Pérez-Castejón MJ, et al. Visual and statistical analysis of 18F-FDG PET in primary progressive aphasia[J]. Eur J Nucl Med Mol Imaging, 2015, 42(6):916-927. DOI:10.1007/s00259-015-2994-9.
[11]

Iaccarino L, Crespi C, Della RPA, et al. The semantic variant of primary progressive aphasia: clinical and neuroimaging evidence in single subjects[J/OL]. PLoS One, 2015, 10(3): e0120197[2018-03-18]. https://journals.plos.org/plosone/article/fileid=10.1371/journal.pone.0120197&type=printable. DOI: 10.1371/journal.pone.0120197.

[12] Del SA, Perini G, Lecchi M, et al. Correlation between 123I-FP-CIT brain SPECT and parkinsonism in dementia with Lewy bodies:caveat for clinical use[J]. Clin Nucl Med, 2015, 40(1):32-35. DOI:10.1097/RLU.0000000000000602.
[13] Fujishiro H, Iseki E, Kasanuki K, et al. A follow up study of non-demented patients with primary visual cortical hypometabolism:prodromal dementia with Lewy bodies[J]. J Neurol Sci, 2013, 334(1/2):48-54. DOI:10.1016/j.jns.2013.07.013.
[14] Chiba Y, Iseki E, Fujishiro H, et al. Primary visual cortical metabolism and rapid eye movement sleep behavior disorder in dementia with Lewy bodies[J]. Psychiatry Clin Neurosci, 2014, 68(2):137-144. DOI:10.1111/pcn.12101.
[15] Lin KJ, Hsiao IT, Hsu JL, et al. Imaging characteristic of dualphase 18F-florbetapir (AV-45/Amyvid) PET for the concomitant detection of perfusion deficits and beta-amyloid deposition in Alzheimer's disease and mild cognitive impairment[J]. Eur J Nucl Med Mol Imaging, 2016, 43(7):1304-1314. DOI:10.1007/s00259-016-3359-8.
[16] Heurling K, Leuzy A, Zimmer ER, et al. Imaging β-amyloid using[18F]flutemetamol positron emission tomography:from dosimetry to clinical diagnosis[J]. Eur J Nucl Med Mol Imaging, 2016, 43(2):362-373. DOI:10.1007/s00259-015-3208-1.
[17] Sabri O, Seibyl J, Rowe C, et al. Beta-amyloid imaging with florbetaben[J]. Clin Transl Imaging, 2015, 3(1):13-26. DOI:10.1007/s40336-015-0102-6.
[18] Morris E, Chalkidou A, Hammers A, et al. Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer's disease:a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2016, 43(2):374-385. DOI:10.1007/s00259-015-3228-x.
[19] Frey K, Perani D. Amyloid PET imaging:a challenge for research in clinical neuroimaging[J]. Clin Transl Imaging, 2015, 3(1):3-5. DOI:10.1007/s40336-015-0105-3.
[20] Jack CR, Barrio JR, Kepe V. Cerebral amyloid PET imaging in Alzheimer's disease[J]. Acta Neuropathol, 2013, 126(5):643-657. DOI:10.1007/s00401-013-1185-7.
[21] Nordberg A, Carter SF, Rinne J, et al. A European multicentre PET study of fibrillar amyloid in Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2013, 40(1):104-114. DOI:10.1007/s00259-012-2237-2.
[22] Murphy KR, Landau SM, Choudhury KR, et al. Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth[J]. Neuroimage, 2013, 78:474-480. DOI:10.1016/j.neuroimage. 2013. 04.048.
[23] Rodrigue KM, Rieck JR, Kennedy KM, et al. Risk factors for β-amyloid deposition in healthy aging:vascular and genetic effects[J].JAMA Neurol, 2013, 70(5):600-606. DOI:10.1001/jamaneurol.2013.1342.
[24] Doré V, Villemagne VL, Bourgeat P, et al. Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease[J]. JAMA Neurol, 2013, 70(7):903-911. DOI:10.1001/jamaneurol.2013.1062.
[25] Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia:a meta-analysis[J]. JAMA, 2015, 313(19):1924-1938. DOI:10.1001/jama.2015.4668.
[26] Herholz K. The role of PET quantification in neurological imaging:FDG and amyloid imaging in dementia[J]. Clin Transl Imaging, 2014, 2(4):321-330. DOI:10.1007/s40336-014-0073-z.
[27] Roy K, Pepin LC, Philiossaint M, et al. Regional fluorodeoxyglucose metabolism and instrumental activities of daily living across the Alzheimer's disease spectrum[J]. J Alzheimers Dis, 2014, 42(1):291-300. DOI:10.3233/JAD-131796.
[28] Iaccarino L, Marelli S, Iannaccone S, et al. Severe Brain Metabolic Decreases Associated with REM Sleep Behavior Disorder in Dementia with Lewy Bodies[J]. J Alzheimers Dis, 2016, 52(3):989-997. DOI:10.3233/JAD-151000.
[29] Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J]. Neuron, 2013, 79(6):1094-1108. DOI:10.1016/j.neuron.2013.07.037.
[30] Shimada H, Kitamura S, Shinotoh H, et al. Association between Aβ and tau accumulations and their influence on clinical features in aging and Alzheimer's disease spectrum brains:A[11C]PBB3-PET study[J]. Alzheimers Dement(Amst), 2016, 6:11-20. DOI:10.1016/j.dadm.2016.12.009.
[31] Villemagne VL, Furumoto S, Fodero-Tavoletti MT, et al. In vivo evaluation of a novel tau imaging tracer for Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2014, 41(5):816-826. DOI:10.1007/s00259-013-2681-7.
[32] Harada R, Okamura N, Furumoto S, et al. Characteristics of Tau and Its Ligands in PET Imaging[J]. Biomolecules, 2016, 6(1):7. DOI:10.3390/biom6010007.
[33] Ishiki A, Harada R, Okamura N, et al. Tau imaging with[F]THK-5351 in progressive supranuclear palsy[J]. Eur J Neurol, 2017, 24(1):130.  doi: 10.1111/ene.2017.24.issue-1
[34] Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the novel PHF-tau radioligand[F-18]-T807[J]. J Alzheimers Dis, 2013, 34(2):457-468. DOI:10.3233/JAD-122059.
[35] Mintun M, Schwarz A, Joshi A, et al. Exploratory analyses of regional human brain distribution of the PET tau tracer F18-labeled T807(AV-1541) in subjects with normal cognitive function or cognitive impairment thought to be due to Alzheimer's disease[J]. Alzheimers Dement, 2013, 9(4 Suppl):S842. DOI:10.1016/j.jalz.2013. 08. 003.
[36] Lowe VJ, Curran G, Fang P, et al. An autoradiographic evaluation of AV-1451 Tau PET in dementia[J]. Acta Neuropathol Commun, 2016, 4(1):1-19. DOI10.1186/s40478-016-0315-6.  doi: 10.1186/s40478-015-0269-0
[37] Marquié M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer[F-18] -AV-1451(T807) on postmortem brain tissue[J]. Ann Neurol, 2015, 78(5):787-800. DOI:10.1002/ana.24517.
[38] Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease[J]. Brain, 2016, 139(Pt 5):1551-1567. DOI:10.1093/brain/aww027.
[39] Xia C, Makaretz SJ, Caso C, et al. Association of In Vivo[18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease[J]. JAMA Neurol, 2017, 74(4):427-436. DOI:10.1001/jamaneurol. 2016.5755.
[40] Turkheimer FE, Rizzo G, Bloomfield PS, et al. The methodology of TSPO imaging with positron emission tomography[J]. Biochem Soc Trans, 2015, 43(4):586-592. DOI:10.1042/BST20150058.
[41] Varley J, Brooks DJ, Edison P. Imaging neuroinflammation in Alzheimer's disease and other dementias:Recent advances and future directions[J]. Alzheimers Dement, 2015, 11(9):1110-1120. DOI:10.1016/j.jalz.2014.08.105.
[42] Fan Z, Aman Y, Ahmed I, et al. Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia[J]. Alzheimers Dement, 2015, 11(6):608-621. e7. DOI:10.1016/j.jalz.2014.06.016.
[43] 姚志文, 蒋雨平.在变性病性痴呆中11C-MP4A PET显像[J].中国临床神经科学, 2007, 15(5):533-536.  doi: 10.3969/j.issn.1008-0678.2007.05.019
Yao ZW, Jiang YP. 11C-MP4A PET in Degenerative Dementia[J]. Chin J Clin Neurosci, 2007, 15(5):533-536.  doi: 10.3969/j.issn.1008-0678.2007.05.019
[44] Herholz K, Weisenbach S, Zündorf G, et al. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease[J]. Neuroimage, 2004, 21(1):136-143. DOI:10.1016/j.neuroimage.2003.09.042.
[45] Shimada H, Hirano S, Sinotoh H, et al.Dementia with Lewy bodies can be well-differentiated from Alzheimer's disease by measurement of brain acetylcholinesterase activity-a[11C]MP4A PET study[J]. Int J Geriatr Psychiatry, 2015, 30(11):1105-1113.DOI:10.1002/gps.4338.