[1]

Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, et al. Radiation-induced lung injury: current evidence[J/OL]. BMC Pulm Med, 2021, 21(1): 9[2023-07-24]. https://bmcpulmmed.biomedcentral.com/articles/10.1186/s12890-020-01376-4. DOI: 10.1186/s12890-020-01376-4.

[2]

Wang HR, Wei JL, Zheng QS, et al. Radiation-induced heart disease: a review of classification, mechanism and prevention[J/OL]. Int J Biol Sci, 2019, 15(10): 2128−2138[2023-07-24]. https://www.ijbs.com/v15p2128.htm. DOI: 10.7150/ijbs.35460.

[3] Hanania AN, Mainwaring W, Ghebre YT, et al.  Radiation-induced lung injury: assessment and management[J]. Chest, 2019, 156(1): 150-162.   doi: 10.1016/j.chest.2019.03.033
[4] Shinde A, Li R, Kim J, et al.  Stereotactic body radiation therapy (SBRT) for early-stage lung cancer in the elderly[J]. Semin Oncol, 2018, 45(4): 210-219.   doi: 10.1053/j.seminoncol.2018.06.002
[5] Georg D, Knöös T, McClean B.  Current status and future perspective of flattening filter free photon beams[J]. Med Phys, 2011, 38(3): 1280-1293.   doi: 10.1118/1.3554643
[6] Greco C, Wolden S.  Current status of radiotherapy with proton and light ion beams[J]. Cancer, 2007, 109(7): 1227-1238.   doi: 10.1002/cncr.22542
[7] De Kruijff RM.  FLASH radiotherapy: ultra-high dose rates to spare healthy tissue[J]. Int J Radiat Biol, 2020, 96(4): 419-423.   doi: 10.1080/09553002.2020.1704912
[8] Durante M, Bräuer-Krisch E, Hill M.  Faster and safer? FLASH ultra-high dose rate in radiotherapy[J]. Br J Radiol, 2018, 91(1082): 20170628-.   doi: 10.1259/bjr.20170628
[9] Vozenin MC, Bourhis J, Durante M.  Towards clinical translation of FLASH radiotherapy[J]. Nat Rev Clin Oncol, 2022, 19(12): 791-803.   doi: 10.1038/s41571-022-00697-z
[10] Dewey DL, Boag JW.  Modification of the oxygen effect when bacteria are given large pulses of radiation[J]. Nature, 1959, 183(4673): 1450-1451.   doi: 10.1038/1831450a0
[11] Town CD.  Effect of high dose rates on survival of mammalian cells[J]. Nature, 1967, 215(5103): 847-848.   doi: 10.1038/215847a0
[12] Berry RJ, Hall EJ, Forster DW, et al.  Survival of mammalian cells exposed to X rays at ultra-high dose-rates[J]. Br J Radiol, 1969, 42(494): 102-107.   doi: 10.1259/0007-1285-42-494-102
[13]

Hornsey S, Bewley DK. Hypoxia in mouse intestine induced by electron irradiation at high dose-rates[J/OL]. Int J Radiat Biol Relat Stud Phys Chem Med, 1971, 19(5): 479−483[2023-07-24]. https://www.tandfonline.com/doi/abs/10.1080/09553007114550611. DOI: 10.1080/09553007114550611.

[14] Epp ER, Weiss H, Djordjevic B, et al.  The radiosensitivity of cultured mammalian cells exposed to single high intensity pulses of electrons in various concentrations of oxygen[J]. Radiat Res, 1972, 52(2): 324-332.   doi: 10.2307/3573572
[15]

Weiss H, Epp ER, Heslin JM, et al. Oxygen depletion in cells irradiated at ultra-high dose-rates and at conventional dose-rates[J/OL]. Int J Radiat Biol Relat Stud Phys Chem Med, 1974, 26(1): 17−29[2023-07-24]. https://www.tandfonline.com/doi/abs/10.1080/09553007414550901. DOI: 10.1080/09553007414550901.

[16] Ling CC, Michaels HB, Epp ER, et al.  Oxygen diffusion into mammalian cells following ultrahigh dose rate irradiation and lifetime estimates of oxygen-sensitive species[J]. Radiat Res, 1978, 76(3): 522-532.   doi: 10.2307/3574801
[17] Favaudon V, Caplier L, Monceau V, et al.  Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice[J]. Sci Transl Med, 2014, 6(245): 245ra93-.   doi: 10.1126/scitranslmed.3008973
[18]

Valdés Zayas A, Kumari N, Liu K, et al. Independent reproduction of the FLASH effect on the gastrointestinal tract: a multi-institutional comparative study[J/OL]. Cancers (Basel), 2023, 15(7): 2121[2023-07-24]. https://www.mdpi.com/2072-6694/15/7/2121. DOI: 10.3390/cancers15072121.

[19] Pierre MG, Petersson K, Jaccard M, et al.  Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s[J]. Radiother Oncol, 2017, 124(3): 365-369.   doi: 10.1016/j.radonc.2017.05.003
[20] Pierre MG, Audrey B, Maud J, et al.  X-rays can trigger the FLASH effect: ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice[J]. Radiother Oncol, 2018, 129(3): 582-588.   doi: 10.1016/j.radonc.2018.08.016
[21] Pierre MG, Acharya MM, Petersson K, et al.  Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species[J]. Proc Natl Acad Sci U S A, 2019, 116(22): 10943-10951.   doi: 10.1073/pnas.1901777116
[22] Pierre MG, Markarian M, Allen BD, et al.  Ultra-high-dose-rate FLASH irradiation limits reactive gliosis in the brain[J]. Radiat Res, 2020, 194(6): 634-645.   doi: 10.1667/RADE-20-00067.1
[23] Pierre MG, Acharya MM, Jorge PG, et al.  Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice[J]. Clin Cancer Res, 2021, 27(3): 775-784.   doi: 10.1158/1078-0432.CCR-20-0894
[24] Simmons DA, Lartey FM, Schüler E, et al.  Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation[J]. Radiother Oncol, 2019, 139: 4-10.   doi: 10.1016/j.radonc.2019.06.006
[25]

Alaghband Y, Cheeks SN, Allen BD, et al. Neuroprotection of radiosensitive juvenile mice by ultra-high dose rate FLASH irradiation[J/OL]. Cancers (Basel), 2020, 12(6): 1671[2023-07-24]. https://www.mdpi.com/2072-6694/12/6/1671. DOI: 10.3390/cancers12061671.

[26] Iturri L, Bertho A, Lamirault C, et al.  Proton FLASH radiation therapy and immune infiltration: evaluation in an orthotopic glioma rat model[J]. Int J Radiat Oncol Biol Phys, 2023, 116(3): 655-665.   doi: 10.1016/j.ijrobp.2022.12.018
[27] Diffenderfer ES, Verginadis II, Kim MM, et al.  Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system[J]. Int J Radiat Oncol Biol Phys, 2020, 106(2): 440-448.   doi: 10.1016/j.ijrobp.2019.10.049
[28]

Levy K, Natarajan S, Wang JH, et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice[J/OL]. Sci Rep, 2020, 10(1): 21600[2023-07-24]. https://www.nature.com/articles/s41598-020-78017-7. DOI: 10.1038/s41598-020-78017-7.

[29] Zhang QX, Cascio E, Li CM, et al.  FLASH investigations using protons: design of delivery system, preclinical setup and confirmation of FLASH effect with protons in animal systems[J]. Radiat Res, 2020, 194(6): 656-664.   doi: 10.1667/RADE-20-00068.1
[30] Soto LA, Casey KM, Wang JH, et al.  FLASH irradiation results in reduced severe skin toxicity compared to conventional-dose-rate irradiation[J]. Radiat Res, 2020, 194(6): 618-624.   doi: 10.1667/RADE-20-00090
[31]

Cunningham S, Mccauley S, Vairamani K, et al. FLASH proton pencil beam scanning irradiation minimizes radiation-induced leg contracture and skin toxicity in mice[J/OL]. Cancers (Basel), 2021, 13(5): 1012[2023-07-24]. https://www.mdpi.com/2072-6694/13/5/1012. DOI: 10.3390/cancers13051012.

[32] Vozenin MC, De Fornel P, Petersson K, et al.  The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients[J]. Clin Cancer Res, 2019, 25(1): 35-42.   doi: 10.1158/1078-0432.CCR-17-3375
[33] Velalopoulou A, Karagounis IV, Cramer GM, et al.  FLASH proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response[J]. Cancer Res, 2021, 81(18): 4808-4821.   doi: 10.1158/0008-5472.CAN-21-1500
[34] Buonanno M, Grilj V, Brenner DJ.  Biological effects in normal cells exposed to FLASH dose rate protons[J]. Radiother Oncol, 2019, 139: 51-55.   doi: 10.1016/j.radonc.2019.02.009
[35]

Venkatesulu BP, Sharma A, Pollard-Larkin JM, et al. Author correction: ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome[J/OL]. Sci Rep, 2020, 10(1): 11018[2023-07-24]. https://www.nature.com/articles/s41598-020-67913-7. DOI: 10.1038/s41598-020-67913-7.

[36]

Smyth LML, Donoghue JF, Ventura JA, et al. Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model[J/OL]. Sci Rep, 2018, 8(1): 12044[2023-07-24]. https://www.nature.com/articles/s41598-018-30543-1. DOI: 10.1038/s41598-018-30543-1.

[37] Zhou SM, Zheng DD, Fan QY, et al.  Minimum dose rate estimation for pulsed FLASH radiotherapy: a dimensional analysis[J]. Med Phys, 2020, 47(7): 3243-3249.   doi: 10.1002/mp.14181
[38]

Zhang QX, Gerweck LE, Cascio E, et al. Absence of tissue-sparing effects in partial proton FLASH irradiation in murine intestine[J/OL]. Cancers (Basel), 2023, 15(8): 2269[2023-07-24]. https://www.mdpi.com/2072-6694/15/8/2269. DOI: 10.3390/cancers15082269.

[39] Zhang QX, Gerweck LE, Cascio E, et al.  Proton FLASH effects on mouse skin at different oxygen tensions[J]. Phys Med Biol, 2023, 68(5): 055010-.   doi: 10.1088/1361-6560/acb888
[40]

Adrian G, Konradsson E, Beyer S, et al. Cancer cells can exhibit a sparing FLASH effect at low doses under normoxic in vitro-conditions[J/OL]. Front Oncol, 2021, 11: 686142[2023-07-24]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.686142/full. DOI: 10.3389/fonc.2021.686142.

[41] Chabi S, To THV, Leavitt R, et al.  Ultra-high-dose-rate FLASH and conventional-dose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis[J]. Int J Radiat Oncol Biol Phys, 2021, 109(3): 819-829.   doi: 10.1016/j.ijrobp.2020.10.012
[42] Shi XL, Yang YW, Zhang W, et al.  FLASH X-ray spares intestinal crypts from pyroptosis initiated by cGAS-STING activation upon radioimmunotherapy[J]. Proc Natl Acad Sci U S A, 2022, 119(43): e2208506119-.   doi: 10.1073/pnas.2208506119
[43] Bourhis J, Sozzi WJ, Jorge PG, et al.  Treatment of a first patient with FLASH-radiotherapy[J]. Radiother Oncol, 2019, 139: 18-22.   doi: 10.1016/j.radonc.2019.06.019
[44] Mascia AE, Daugherty EC, Zhang YB, et al.  Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: the FAST-01 nonrandomized trial[J]. JAMA Oncol, 2023, 9(1): 62-69.   doi: 10.1001/jamaoncol.2022.5843
[45] Rama N, Saha T, Shukla S, et al.  Improved tumor control through T-cell infiltration modulated by ultra-high dose rate proton FLASH using a clinical pencil beam scanning proton system[J]. Int J Radiat Oncol Biol Phys, 2019, 105(S1): S164-165.   doi: 10.1016/j.ijrobp.2019.06.187
[46] Wilson P, Jones B, Yokoi T, et al.  Revisiting the ultra-high dose rate effect: implications for charged particle radiotherapy using protons and light ions[J]. Br J Radiol, 2012, 85(1018): e933-e939.   doi: 10.1259/bjr/17827549
[47] Spitz DR, Buettner GR, Petronek MS, et al.  An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses[J]. Radiother Oncol, 2019, 139: 23-27.   doi: 10.1016/j.radonc.2019.03.028
[48] Mckeown SR.  Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response[J]. Br J Radiol, 2014, 87(1035): 20130676-.   doi: 10.1259/BJR.20130676
[49] Yovino S, Kleinberg L, Grossman SA, et al.  The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells[J]. Cancer Invest, 2013, 31(2): 140-144.   doi: 10.3109/07357907.2012.762780
[50] Durante M, Yamada S, Ando K, et al.  Measurements of the equivalent whole-body dose during radiation therapy by cytogenetic methods[J]. Phys Med Biol, 1999, 44(5): 1289-1298.   doi: 10.1088/0031-9155/44/5/314
[51]

Girdhani S, Abel E, Katsis A, et al. Abstract LB-280: FLASH: a novel paradigm changing tumor irradiation platform that enhances therapeutic ratio by reducing normal tissue toxicity and activating immune pathways[J]. Cancer Res, 2019, 79(13_Supplement): SLB-280−LB-280. DOI:10.1158/1538-7445.AM2019-LB-280.

[52] Abolfath R, Grosshans D, Mohan R.  Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: a molecular dynamics simulation[J]. Med Phys, 2020, 47(12): 6551-6561.   doi: 10.1002/mp.14548
[53] Vozenin MC, Hendry JH, Limoli CL.  Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken[J]. Clin Oncol (R Coll Radiol), 2019, 31(7): 407-415.   doi: 10.1016/j.clon.2019.04.001
[54]

Yang G, Lu CY, Mei ZS, et al. Association of cancer stem cell radio-resistance under ultra-high dose rate FLASH irradiation with lysosome-mediated autophagy[J/OL]. Front Cell Dev Biol, 2021, 9: 672693[2023-07-24]. https://www.frontiersin.org/articles/10.3389/fcell.2021.672693/full. DOI: 10.3389/fcell.2021.672693.

[55] Fouillade C, Curras-Alonso S, Giuranno L, et al.  FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence[J]. Clin Cancer Res, 2020, 26(6): 1497-1506.   doi: 10.1158/1078-0432.CCR-19-1440
[56] Friedl AA, Prise KM, Butterworth KT, et al.  Radiobiology of the FLASH effect[J]. Med Phys, 2022, 49(3): 1993-2013.   doi: 10.1002/mp.15184