[1] Hass F, Haehnl CJ, Picker W, et al. Preoperative positron emission tomographic viability assessment and perioperative risk in patients with advanced ischemic heart disease[J]. J Am Coll Cardiol, 1997, 30(7):1693-1700.
[2] Gerber BL, Vanoverschelde JL, Bol A, et al. Myocardial blood flow, glucose uptake and recruitment for inotropic reserve in chronic left ventricular ischaemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation[J]. Circulation, 1996, 94(4):651-659.
[3] Dicarli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularisation in patients with ischemic cardiomyopathy[J]. Circulation, 1995, 92(12):3436-3444.
[4] Erie Q, Chen S, William J, et al. Myocardial viability studies using fluorine-18-FDG PET[J]. J Nucl Med, 1997, 38(4):582-586.
[5] Srinivasan G, Kitsou AN, Bacharach SL, et al.[18F]Fluorodeoxyglucose single photon emission conmputered tomography:Can it replace PET and Thallium SPECT for the assessment of myocardial viability[J]. Circulation, 1998, 97(9):843-850.
[6] Yamagishi H, Akioka K, Takagi M, et al. Exercise four hour redistribution thallium-201 single photon emission computed tomography and exercise induced ST segment elevation in detecting the viable myocardium in patients with acute myocardial infarction[J]. Heart, 1999, 81(1):17-24.
[7] Duncan BH, Ahlberg AW, Levine MG, et al. Comparison of electrocardiographic-gated technetium-99m sestamibi single-photon emission computed tomographic imaging and rest-redistribution thallium-201 in the prediction of myocardial viability[J]. Am J Cardiol, 2000, 85(6):680-684.
[8] Kaltoft A, Bottcher M, Sand NP, et al. 99Tcm-Sestamibi SPECT is a useful technique for viability detection:results of a comparison with NH3/FDG PET[J]. Scand Cardiovasc J, 2001, 35(4):245-251.
[9] Altehoefer C, Dahl JV, Messmer BJ, et al. Fate of the resting perfusion defect as assessed with technetium-99m methoxy-isobutyl-isonitrile single-photon emission computed tomography after successful revascularization in patients with healed myocardial infarction[J]. Am J Cardiol, 1996, 77(1):88-92.
[10] Kawamoto M, Tamaki N, Yonekura Y, et al. Combined study with 123I fatty acid and 201Tl to assess ischemic myocardium:comparison with thallium redistribution and glucose metabolism[J]. Ann Nucl Med, 1994, 8(1):47-54.
[11] Knapp FF, Franken P, Kropp J, et al. Cardiac SPECT with iodine-123-labeled fatty acids:evaluation of myocardial viability with BMIPP[J]. J Nucl Med, 1995, 36(6):1022-1030.
[12] Keiichiro Y, Koichi M, Satohi Y, et al. Low-dose dobutamine electrocardiography-gated myocardial SPECT for identifying viable myocardium:Comparison with dobutamine stress echocardiography and PET[J]. J Nucl Med, 2001, 42:838-844.
[13] Sozzi FB, Poldermans D, Bax JJ, et al. Improved identification of viable myocardium using second harmonic imaging during dobutamine stress echocardiography[J]. Heart, 2001, 86(6):672-678.
[14] Zaglavara T, Haaverstad R, Cumberledge B, et al. Dobutamine stress echocardiography for the detection of myocardial viability in patients with left ventricular dysfunction taking β blockers:accuracy and optimal dose[J]. Heart, 2002, 87(4):329-335.
[15] Charles BH. Prediction of myocardial viability by MRI[J]. Circulation, 1999, 99(6):727-729.
[16] Rogers WJ, Kramer CM, Geskin G, et al. Early contrastenhanced MRI predicts late functional recovery after reperfused myocardial infarction[J]. Circulation, 1999, 99(6):744-750.
[17] Wahba FF, Lamb HJ, Bax JJ, et al. Assessment of regional myocardial wall motion and thickening by gated 99Tcm-tetrofosmin SPECT:a comparison with magnetic resonance imaging[J]. Nucl Med Commun, 2001, 22(6):663-671.